

# EN 300 328 Test Report

Product Name : Blazepod Model No. : Blazepod

Applicant : Play Coyotta

Address : 19 hazohar st. tel aviv

 Date of Receipt
 :
 July. 18, 2018

 Test Date
 :
 July. 19, 2018~ July. 31, 2018

 Issued Date
 :
 Aug. 09, 2018

 Report No.
 :
 1872100R-RF-CE-P17V02

 Report Version
 :
 V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by CNAS, TAF or any agency of the government. The test report shall not be reproduced without the written approval of DEKRA Testing & Certification (Suzhou) Co., Ltd.



## **Test Report Certification**

Issued Date : Aug. 09, 2018 Report No. : 1872100R-RF-CE-P17V02



| : | Blazepod                                              |
|---|-------------------------------------------------------|
| : | Play Coyotta                                          |
| : | 19 hazohar st. tel aviv                               |
| : | Play Coyotta                                          |
| : | 19 hazohar st. tel aviv, Israel                       |
| : | Blazepod                                              |
| : | DC 5V                                                 |
|   | AC 230V/50Hz                                          |
| : | ETSI EN 300 328 V2.1.1 (2016-11)                      |
| : | Complied                                              |
| : | DEKRA Testing & Certification (Suzhou) Co., Ltd.      |
|   | Corporation No.99 Hongye Rd., Suzhou Industrial Park, |
|   | Suzhou, 215006, Jiangsu, China                        |
|   | TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098       |
|   |                                                       |
| : |                                                       |
|   |                                                       |
|   | (Adm. Specialist: Kitty Li)                           |
| : |                                                       |
|   |                                                       |
|   | (Senior Engineer: Frank He)                           |
| : |                                                       |
|   | (Engineering Managar: Harny Zhao)                     |
|   | (Engineering Manager: Harry Zhao)                     |
|   |                                                       |



## TABLE OF CONTENTS

| Descriptio | n                                                               | Page |
|------------|-----------------------------------------------------------------|------|
| History of | This Test Report                                                | 5    |
| 1.         | General Information                                             | 6    |
| 1.1.       | EUT Description                                                 | 6    |
| 1.2.       | BT Antenna List                                                 | 7    |
| 1.3.       | EUT Operational Condition                                       | 8    |
| 1.4.       | Mode of Operation                                               | 9    |
| 1.5        | Tested System Details                                           | 10   |
| 1.6        | Configuration of Tested System                                  | 10   |
| 1.7        | EUT Exercise Software                                           | 10   |
| 2          | Technical Test                                                  | 11   |
| 2.1        | Test Information as required by ETSI EN 300 328 V2.1.1          | 11   |
| 2.2        | Summary of Test Result for other than FHSS wide band modulation | 16   |
| 2.3        | Measurement Uncertainty                                         | 17   |
| 2.4        | Test Environment                                                | 17   |
| 2.5        | RF Output Power                                                 | 18   |
| 2.6        | Test Equipment                                                  | 18   |
| 2.7        | Test Setup                                                      | 19   |
| 2.8        | Limit                                                           | 19   |
| 2.9        | Test Procedure                                                  | 20   |
| 2.10       | Test Result                                                     | 22   |
| 3          | Power Spectral Density                                          | 23   |
| 3.1        | Test Equipment                                                  | 23   |
| 3.2        | Test Setup                                                      | 23   |
| 3.3        | Limit                                                           | 23   |
| 3.4        | Test Procedure                                                  | 24   |
| 3.5        | Test Result                                                     | 26   |
| 4          | Duty Cycle, Tx-sequence, Tx-gap                                 | 27   |
| 4.1        | Test Equipment                                                  | 27   |
| 4.2        | Test Setup                                                      | 27   |
| 4.3        | Limit                                                           | 27   |
| 4.4        | Test Procedure                                                  |      |
| 4.5        | Test Result                                                     |      |
| 5          | Medium Utilisation (MU) factor                                  | 31   |
| 5.1        | Test Equipment                                                  | 31   |
| 5.2        | Test Setup                                                      | 31   |
| 5.3        | Limit                                                           | 31   |
| 5.4        | Test Procedure                                                  | 32   |



| 5.5  | Test Result                                                       | 33 |
|------|-------------------------------------------------------------------|----|
| 6    | Adaptivity (Adaptive equipment using modulations other than FHSS) | 34 |
| 6.1  | Test Equipment                                                    | 34 |
| 6.2  | Test Setup                                                        | 34 |
| 6.3  | Limit                                                             | 35 |
| 6.4  | Test Procedure                                                    | 36 |
| 6.5  | Test Result                                                       | 39 |
| 7    | Occupied Channel Bandwidth                                        | 40 |
| 7.1  | Test Equipment                                                    | 40 |
| 7.2  | Test Setup                                                        | 40 |
| 7.3  | Limit                                                             | 40 |
| 7.4  | Test Procedure                                                    | 41 |
| 7.5  | Test Result                                                       | 42 |
| 8    | Transmitter unwanted emissions in the out-of-band domain          | 43 |
| 8.1  | Test Equipment                                                    | 43 |
| 8.2  | Test Setup                                                        | 43 |
| 8.3  | Limit                                                             | 44 |
| 8.4  | Test Procedure                                                    | 44 |
| 8.5  | Test Result                                                       | 47 |
| 9    | Transmitter unwanted emissions in the spurious domain             | 48 |
| 9.1  | Test Equipment                                                    | 48 |
| 9.2  | Test Setup                                                        | 49 |
| 9.3  | Limit                                                             | 50 |
| 9.4  | Test Procedure                                                    | 51 |
| 9.5  | Test Result                                                       | 54 |
| 10   | Receiver Spurious Emissions                                       | 55 |
| 10.1 | Test Equipment                                                    | 55 |
| 10.2 | Test Setup                                                        | 56 |
| 10.3 | Limit                                                             | 56 |
| 10.4 | Test Procedure                                                    | 57 |
| 10.5 | Test Result                                                       | 60 |
| 11   | Receiver Blocking                                                 | 61 |
| 11.1 | Test Equipment                                                    | 61 |
| 11.2 | Test Setup                                                        | 61 |
| 11.3 | Limit                                                             | 62 |
| 11.4 | Test Procedure                                                    | 64 |
| 11.5 | Test Result                                                       | 65 |



## History of This Test Report

| REPORT NO.            | VERSION | DESCRIPTION           | ISSUED DATE   |
|-----------------------|---------|-----------------------|---------------|
| 1872100R-RF-CE-P17V02 | V1.0    | Initial Issued Report | Aug. 09, 2018 |
|                       |         |                       |               |
|                       |         |                       |               |
|                       |         |                       |               |



#### 1. General Information

## 1.1. EUT Description

| Product Name          | Blazepod                  |
|-----------------------|---------------------------|
| Model No.             | Blazepod                  |
| EUT Voltage           | DC 5V                     |
| Test Voltage          | AC 230V/50Hz              |
| Bluetooth             |                           |
| BT Specification      | Version 4.0               |
| BT Frequency          | 2402~2480MHz              |
| BT Channel Number     | V4.0: 40                  |
| BT Channel Separation | V4.0: 2MHz                |
| BT Type of Modulation | V4.0: GFSK                |
| BT Data Rate          | V4.0: 1Mbps(GFSK)         |
| Channel Control       | Auto                      |
| Antenna Type          | Reference to Antenna List |
| Peak Antenna Gain     | Reference to Antenna List |



#### 1.2. BT Antenna List

| Model No.            | N/A       |              |             |                      |                   |      |           |  |
|----------------------|-----------|--------------|-------------|----------------------|-------------------|------|-----------|--|
| Antenna manufacturer | N/A       | N/A          |             |                      |                   |      |           |  |
| Antenna Delivery     | $\square$ | 1*TX+1*R     | Х           |                      | 2*TX+2*RX         |      | 3*TX+3*RX |  |
| Antenna technology   | $\square$ | SISO         |             |                      |                   |      |           |  |
|                      |           |              |             | Basic                |                   |      |           |  |
|                      |           |              |             | CDD                  |                   |      |           |  |
|                      |           | MIMO         |             | Sectorized           |                   |      |           |  |
|                      |           |              |             | Beam-forming         |                   |      |           |  |
| Antenna Type         | Externa   | E sterre e l |             | Dipole               |                   |      |           |  |
|                      |           | External     |             | Sectorized           |                   |      |           |  |
|                      |           | Internal     |             | PIFA                 |                   |      |           |  |
|                      |           |              | $\boxtimes$ | РСВ                  |                   |      |           |  |
|                      |           |              |             | Ceramic Chip Antenna |                   |      |           |  |
|                      |           |              |             | Metal                | plate type F ante | enna |           |  |
| Antonno Tochnology   | Ant Gain  |              |             |                      |                   |      |           |  |
| Antenna Technology   | (dBi)     |              |             |                      |                   |      |           |  |
| SISO                 | 1.92      |              |             |                      |                   |      |           |  |

#### 1.3. Channel List

| Bluetooth | Bluetooth Working Frequency of Each Channel: (For BLE) |         |           |         |           |         |           |
|-----------|--------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel   | Frequency                                              | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 00        | 2402 MHz                                               | 01      | 2404 MHz  | 02      | 2406 MHz  | 03      | 2408 MHz  |
| 04        | 2410 MHz                                               | 05      | 2412 MHz  | 06      | 2414 MHz  | 07      | 2416 MHz  |
| 08        | 2418 MHz                                               | 09      | 2420 MHz  | 10      | 2422 MHz  | 11      | 2424 MHz  |
| 12        | 2426 MHz                                               | 13      | 2428 MHz  | 14      | 2430 MHz  | 15      | 2432 MHz  |
| 16        | 2434 MHz                                               | 17      | 2436 MHz  | 18      | 2438 MHz  | 19      | 2440 MHz  |
| 20        | 2442 MHz                                               | 21      | 2444 MHz  | 22      | 2446 MHz  | 23      | 2448 MHz  |
| 24        | 2450 MHz                                               | 25      | 2452 MHz  | 26      | 2454 MHz  | 27      | 2456 MHz  |
| 28        | 2458 MHz                                               | 29      | 2460 MHz  | 30      | 2462 MHz  | 31      | 2464 MHz  |
| 32        | 2466 MHz                                               | 33      | 2468 MHz  | 34      | 2470 MHz  | 35      | 2472 MHz  |
| 36        | 2474 MHz                                               | 37      | 2476 MHz  | 38      | 2478 MHz  | 39      | 2480 MHz  |



## 1.3. EUT Operational Condition

| EUT Voltage         | DC 5V        |            |             |  |  |
|---------------------|--------------|------------|-------------|--|--|
| Test Voltage        | AC 230V/50Hz |            |             |  |  |
| Extreme Temperature | Tnom (25 )   | Tmax (45 ) | Tmin (-25 ) |  |  |



#### 1.4. Mode of Operation

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT setting in continuously transmitting mode with maximum duty cycle using software, except for adaptivity test which is under streaming with different modes. See the different modes shown in this test report and defined as:

Test Mode Listed

Mode1: Transmit by BLE

Mode2: Receive by BLE

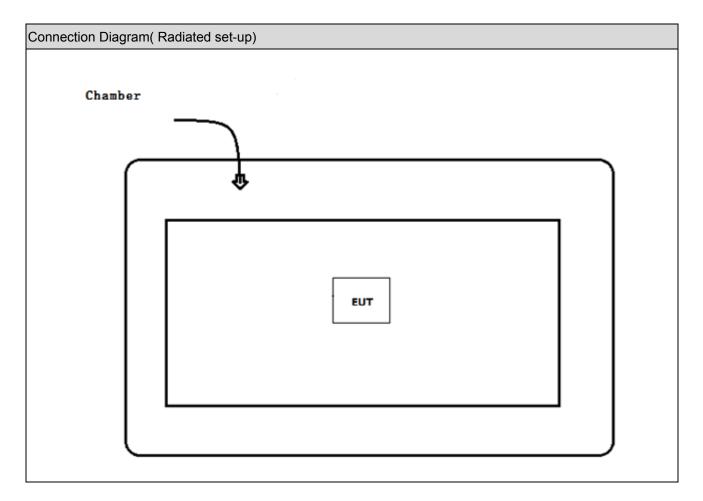
Mode3: Normal Receive by BLE

Note:

1. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to test for conducted, and the lowest, highest frequency channel for radiation spurious test.

2. The extreme test condition for temperature was determined by manufacturer, see Clause 1.4.

3. The reading values of all the test items contain cable loss. (Cable loss=0.5dB)




#### **1.5 Tested System Details**

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Pro | duct | Manufacturer | Model No. | Serial No. | Power Cord |
|-----|------|--------------|-----------|------------|------------|
| 1   | N/A  | N/A          | N/A       | N/A        | N/A        |

#### **1.6 Configuration of Tested System**



#### 1.7 EUT Exercise Software

| 1 | Setup the EUT and simulators as shown on above.                 |
|---|-----------------------------------------------------------------|
| 2 | Turn on the power of equipment.                                 |
| 3 | Select the transmission mode and test channel, then start test. |



#### 2 Technical Test

#### 2.1 Test Information as required by ETSI EN 300 328 V2.1.1

| a) The type of modulation used by the equipment:                                        |
|-----------------------------------------------------------------------------------------|
| FHSS                                                                                    |
| ☑ other forms of modulation                                                             |
| b) In case of FHSS modulation:                                                          |
| In case of non-Adaptive Frequency Hopping equipment:                                    |
| The number of Hopping Frequencies:                                                      |
| In case of Adaptive Frequency Hopping Equipment:                                        |
| The maximum number of Hopping Frequencies:                                              |
| The minimum number of Hopping Frequencies:                                              |
| The (average) Dwell Time:                                                               |
| c) Adaptive / non-adaptive equipment:                                                   |
| non-adaptive Equipment                                                                  |
| ⊠adaptive Equipment without the possibility to switch to a non-adaptive mode            |
| adaptive Equipment which can also operate in a non-adaptive mode                        |
| d) In case of adaptive equipment:                                                       |
| The maximum Channel Occupancy Time implemented by the equipment: ms                     |
| The equipment has implemented an LBT based DAA mechanism                                |
| The equipment is Frame Based equipment                                                  |
| ⊠The equipment is Load Based equipment                                                  |
| The equipment can switch dynamically between Frame Based and Load Based equipment The   |
| CCA time implemented by the equipment: µs                                               |
| The equipment has implemented a non-LBT based DAA mechanism                             |
| The equipment can operate in more than one adaptive mode                                |
| e) In case of non-adaptive Equipment:                                                   |
| The maximum RF Output Power (e.i.r.p.): dBm                                             |
| The maximum (corresponding) Duty Cycle:%                                                |
| Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different |
| combinations of duty cycle                                                              |
| and corresponding power levels to be declared):                                         |
|                                                                                         |



| f) The worst case operational mode for each of the following tests:                          |
|----------------------------------------------------------------------------------------------|
| RF Output Power : mode 1                                                                     |
| Power Spectral Density : mode 1                                                              |
| Occupied Channel Bandwidth : mode 1                                                          |
| Transmitter unwanted emissions in the OOB domain : mode 1                                    |
| Transmitter unwanted emissions in the spurious domain : mode 1                               |
| Receiver spurious emissions : mode 2                                                         |
| Receiver Blocking : mode 3                                                                   |
| g) The different transmit operating modes (tick all that apply):                             |
| Operating mode 1: Single Antenna Equipment                                                   |
| Equipment with only one antenna                                                              |
| Equipment with two diversity antennas but only one antenna active at any moment in time      |
| Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only |
| one antenna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)          |
| Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming             |
| Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)          |
| High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1                       |
| High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2                       |
| NOTE: Add more lines if more channel bandwidths are supported.                               |
| Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming                |
| Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)            |
| High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1                       |
| High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2                       |
| NOTE: Add more lines if more channel bandwidths are supported.                               |
| h) In case of Smart Antenna Systems:                                                         |
| The number of Receive chains:                                                                |
| The number of Transmit chains:                                                               |
| symmetrical power distribution                                                               |
| asymmetrical power distribution                                                              |
| In case of beam forming, the maximum (additional) beam forming gain: dB                      |
| NOTE: The additional beam forming gain does not include the basic gain of a single antenna.  |
| i) Operating Frequency Range(s) of the equipment:                                            |
| Operating Frequency Range 1:2400 MHz to2483.5 MHz                                            |
| Operating Frequency Range 2: MHz to MHz                                                      |
| NOTE: Add more lines if more Frequency Ranges are supported.                                 |
| i) Operating Frequency Range(s) of the equipment:                                            |
|                                                                                              |



Nominal Channel Bandwidth 1: ....2...... MHz Nominal Channel Bandwidth 2: ..... MHz NOTE: Add more lines if more channel bandwidths are supported. k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): Stand-alone Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) Plug-in radio device (Equipment intended for a variety of host systems) I) The extreme operating conditions that apply to the equipment: Normal operating conditions (if applicable): Operating temperature: ...25... ° C Other (please specify if applicable): ..... Extreme operating conditions: Operating temperature range: Minimum: ...-25... ° C Maximum ...45... ° C Other (please specify if applicable): ..... Minimum: ..... Maximum ..... Details provided are for the: Stand-alone equipment combined (or host) equipment 🗌 test jig m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels: Antenna Type: Integral Antenna Antenna Gain: .....1.92..... dBi If applicable, additional beamforming gain (excluding basic antenna gain): ..... dB Temporary RF connector provided No temporary RF connector provided Dedicated Antennas (equipment with antenna connector) Single power level with corresponding antenna(s) Multiple power settings and corresponding antenna(s) Number of different Power Levels: ..... Power Level 1: ..... dBm Power Level 2: ..... dBm Power Level 3: ..... dBm NOTE 1: Add more lines in case the equipment has more power levels. NOTE 2: These power levels are conducted power levels (at antenna connector). For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains



#### (G) and the

resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: ..... dBm

Number of antenna assemblies provided for this power level: ......

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|------------|------------|-------------------|---------------------------|
| 1          |            |                   |                           |
| 2          |            |                   |                           |
| 3          |            |                   |                           |
| 4          |            |                   |                           |

NOTE3: Add more rows in case more antenna assemblies are supported for this power level. Power Level 2: ...... dBm

Number of antenna assemblies provided for this power level: ......

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|------------|------------|-------------------|---------------------------|
| 1          |            |                   |                           |
| 2          |            |                   |                           |
| 3          |            |                   |                           |
| 4          |            |                   |                           |

NOTE4: Add more rows in case more antenna assemblies are supported for this power level. Power Level 3: ...... dBm

Number of antenna assemblies provided for this power level: ......

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|------------|------------|-------------------|---------------------------|
| 1          |            |                   |                           |
| 2          |            |                   |                           |
| 3          |            |                   |                           |
| 4          |            |                   |                           |

NOTE5: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone Radio equipment or the nominal voltages of the combined (host)equipment or test jig in case of plug-in devices:

Details provided are for the:

Stand-alone equipment

combined (or host) equipment

⊡test jig

Supply Voltage

AC mains State AC voltage ......V

DC State DC voltage ..... 5..... V

In case of DC, indicate the type of power source

Internal Power Supply



| External Power Supply or AC/DC adapter                                                                |
|-------------------------------------------------------------------------------------------------------|
| Battery                                                                                               |
| Other:                                                                                                |
| o) Describe the test modes available which can facilitate testing:                                    |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
| p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.): |
| IEEE 802.11™ [i.3]                                                                                    |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
| q) If applicable, the statistical analysis referred to in clause 5.3.1 q)                             |
| (to be provided as separate attachment)                                                               |
| r) If applicable, the statistical analysis referred to in clause 5.3.1 r)                             |
| (to be provided as separate attachment)                                                               |
| s) Geo-location capability supported by the equipment:                                                |
| Yes                                                                                                   |
| The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or              |
| clause 4.3.2.12.2 is not accessible to the user.                                                      |
| No                                                                                                    |
| t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or    |
| clause 4.3.2.11.3):                                                                                   |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |



#### 2.2 Summary of Test Result for other than FHSS wide band modulation

 $\ensuremath{\boxtimes}$  No deviations from the test standards

Deviations from the test standards as below description:

| Denfermend Teach them                                          | Test Procedure   | Ada      | ptive        | Non-Adaptive |          | Deviation |
|----------------------------------------------------------------|------------------|----------|--------------|--------------|----------|-----------|
| Performed Test Item                                            |                  | ( 10dBm) | (<10dBm)     | ( 10dBm)     | (<10dBm) | Deviation |
| RF Output Power                                                | Claus 5.4.2      | Yes      | Yes          | Yes          | Yes      | No        |
| Power Spectral Density                                         | Claus 5.4.3      | Yes      | Yes          | Yes          | Yes      | No        |
| Duty cycle, Tx-Sequence,<br>Tx-gap                             | Claus 5.4.2      | N/A      | N/A          | Yes          | N/A      | N/A       |
| Medium Utilisation (MU)<br>factor                              | Claus 5.4.2      | N/A      | N/A          | Yes          | N/A      | N/A       |
| Adaptivity                                                     | Claus 5.4.6      | Yes      | N/A          | N/A          | N/A      | N/A       |
| Occupied Channel<br>Bandwidth                                  | Claus 5.4.7      | Yes      | Yes          | Yes          | Yes      | No        |
| Transmitter unwanted<br>emissions in the out-of-band<br>domain | Claus 5.4.8<br>d | Yes      | Yes          | Yes          | Yes      | No        |
| Transmitter unwanted<br>emissions in the spurious<br>domain    | Claus 5.4.9      | Yes      | Yes          | Yes          | Yes      | No        |
| Receiver Spurious<br>Emissions                                 | Claus 5.4.10     | Yes      | Yes          | Yes          | Yes      | No        |
| Receiver Blocking                                              | Claus 5.4.11     | Yes      | Yes          | Yes          | Yes      | No        |
| Geo-location capability                                        | N/A              | N/A      | N/A          | N/A          | N/A      | N/A       |
| Note 1: Test items is from C<br>Note 2: The EUT don't have     |                  |          | .1 (2016-12) |              |          | 1         |



#### 2.3 Measurement Uncertainty

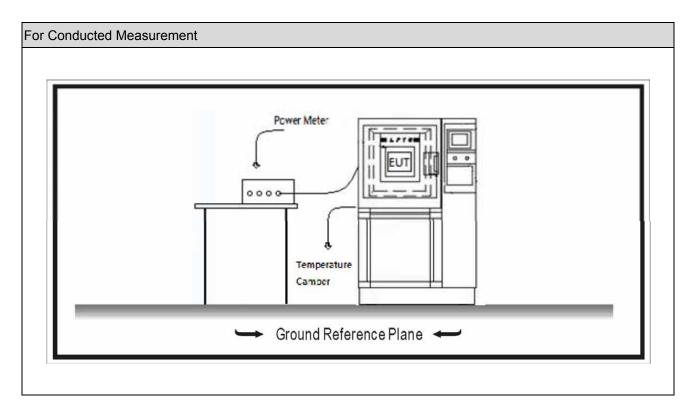
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                     | Uncertainty            |  |  |
|-------------------------------|------------------------|--|--|
| Radio Frequency               | ± 1 x 10 <sup>-7</sup> |  |  |
| Total RF Power, Conducted     | ± 0.7dB                |  |  |
| RF Power Density, Conducted   | ± 2.5dB                |  |  |
| Spurious Emissions, Conducted | ± 2.8dB                |  |  |
| All emissions, Radiated       | ± 5.2dB                |  |  |
| Temperature                   | ± 0.5                  |  |  |
| Humidity                      | ± 1%                   |  |  |
| DC and Low Frequency Voltage  | ±2%                    |  |  |

#### 2.4 Test Environment

| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 21       |
| Humidity (%RH)             | 25-75               | 51       |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |




### 2.5 RF Output Power

#### 2.6 Test Equipment

| RF Output Power / TR-7                                                                                                                    |              |              |              |                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|----------------|--|--|
| Instrument                                                                                                                                | Manufacturer | Type No.     | Serial No.   | Cal. Due Date  |  |  |
| Power Meter                                                                                                                               | Anritsu      | ML2495A      | 0905006      | 2018.10.18     |  |  |
| Power Sensor                                                                                                                              | Anritsu      | MA2411B      | 0846014      | 2018.10.18     |  |  |
| DC Power Supply                                                                                                                           | IDRC         | CD-035-020PR | 977272       | 2018.09.04     |  |  |
| Programmable Temperature<br>& Humidity Chamber                                                                                            | Gaoyu        | TH-1P-B      | WIT-05121302 | 2019.01.04     |  |  |
| Temperature/Humidity Meter                                                                                                                | Zhichen      | ZC1-2        | TR8-TH       | 2019.04.10     |  |  |
| EN 300328 Test system (V3.                                                                                                                | 160113)      |              |              |                |  |  |
| Instrument                                                                                                                                | Manufacturer | Type No.     | Serial No.   | Cali. Due Date |  |  |
| X-series USB Peak and<br>Average Power Sensor                                                                                             | Agilent      | U2021XA      | MY54080020   | 2019.06.25     |  |  |
| X-series USB Peak and<br>Average Power Sensor                                                                                             | Agilent      | U2021XA      | MY54110001   | 2019.06.25     |  |  |
| X-series USB Peak and<br>Average Power Sensor                                                                                             | Agilent      | U2021XA      | MY53480008   | 2019.06.25     |  |  |
| X-series USB Peak and<br>Average Power Sensor                                                                                             | Agilent      | U2021XA      | MY54080019   | 2019.06.25     |  |  |
| 4 Ch.Simultaneous<br>Sampling 14 Bits 2 MS/s                                                                                              | Agilent      | U2531A       | TW54063507   | N/A            |  |  |
| 4 Ch.Simultaneous<br>Sampling 14 Bits 2 MS/s                                                                                              | Agilent      | U2531A       | TW54063513   | N/A            |  |  |
| Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards. |              |              |              |                |  |  |



#### 2.7 Test Setup



#### 2.8 Limit

For non-adaptive equipment using wide band modulations other than FHSS

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

For adaptive equipment using wide band modulations other than FHSS

The maximum RF output power shall be 20 dBm.



#### 2.9 Test Procedure

| Test             | Test Method                                                                             |                 |                                                           |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|--|--|--|--|--|
|                  | References Rule                                                                         | Chapter         | Description                                               |  |  |  |  |  |
| $\square$        | ETSI EN 300 328 V2.1.1                                                                  | •               | RF Output Power                                           |  |  |  |  |  |
| Ston             | 1                                                                                       |                 | · ·                                                       |  |  |  |  |  |
| -                | Step 1<br>1,Use a fast power sensor suitable for 2,4 GHz and capable of minimum 1 MS/s. |                 |                                                           |  |  |  |  |  |
|                  | -                                                                                       | 9 101 2,4 GH    | z and capable of minimum 1 MS/s.                          |  |  |  |  |  |
|                  | e the following settings:                                                               |                 |                                                           |  |  |  |  |  |
| . ,              | ample speed 1 MS/s or faster                                                            |                 | ar of the signal                                          |  |  |  |  |  |
| . ,              | he samples shall represent the                                                          | •               | •                                                         |  |  |  |  |  |
| . ,              |                                                                                         | -               | quipment: equal to the observation period defined         |  |  |  |  |  |
|                  |                                                                                         |                 | aptive equipment, the measurement duration                |  |  |  |  |  |
|                  |                                                                                         |                 | mber of bursts (at least 10) are captured.                |  |  |  |  |  |
|                  |                                                                                         | o increase th   | ne measurement accuracy, a higher number of bursts        |  |  |  |  |  |
| -                | be used.                                                                                |                 |                                                           |  |  |  |  |  |
| Step             |                                                                                         |                 |                                                           |  |  |  |  |  |
|                  | or conducted measurements o                                                             |                 |                                                           |  |  |  |  |  |
| (1), (           | Connect the power sensor to t                                                           | he transmit     | port, sample the transmit signal and store the            |  |  |  |  |  |
| raw              | data. Use these stored sample                                                           | es in all follo | wing steps.                                               |  |  |  |  |  |
| 2,Fo             | r conducted measurements or                                                             | n devices wi    | th multiple transmit chains:                              |  |  |  |  |  |
| (1)C             | onnect one power sensor to e                                                            | ach transmi     | t port for a synchronous measurement on all transmit      |  |  |  |  |  |
| ports            | S.                                                                                      |                 |                                                           |  |  |  |  |  |
| (2)Tı            | rigger the power sensors so th                                                          | at they start   | sampling at the same time. Make sure the time             |  |  |  |  |  |
| diffe            | rence between the samples of                                                            | f all sensors   | is less than 500 ns.                                      |  |  |  |  |  |
| (3)F             | or each individual sampling po                                                          | oint (time doi  | main), sum the coincident power samples of all ports      |  |  |  |  |  |
| and              | store them. Use these summe                                                             | ed samples i    | n all following steps.                                    |  |  |  |  |  |
| Step             | 3                                                                                       |                 |                                                           |  |  |  |  |  |
| Find             | the start and stop times of ea                                                          | ch burst in t   | he stored measurement samples.                            |  |  |  |  |  |
| The              | start and stop times are define                                                         | ed as the po    | ints where the power is at least 30 dB below the          |  |  |  |  |  |
| high             | est value of the stored sample                                                          | es in step 2.   |                                                           |  |  |  |  |  |
| ΝΟΤ              | E 2: In case of insufficient dyr                                                        | namic range     | , the value of 30 dB may need to be reduced               |  |  |  |  |  |
| appropriately.   |                                                                                         |                 |                                                           |  |  |  |  |  |
| Step             | 4                                                                                       |                 |                                                           |  |  |  |  |  |
| Betw             | veen the start and stop times of                                                        | of each indiv   | ridual burst calculate the RMS power over the burst       |  |  |  |  |  |
| usin             | g the formula below. Save thes                                                          | se Pburst va    | lues, as well as the start and stop times for each burst. |  |  |  |  |  |
| P <sub>bur</sub> | $P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$                                  |                 |                                                           |  |  |  |  |  |



#### with 'k' being the total number of samples and 'n' the actual sample number

Step 5

The highest of all Pburst values (value "A" in dBm) will be used for maximum e.i.r.p. calculation Step 6

1,Add the (stated) antenna assembly gain "G" in dBi of the individual antenna

2, If applicable, add the additional beamforming gain "Y" in dB.

If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.

The RF Output Power (P) shall be calculated using the formula below:

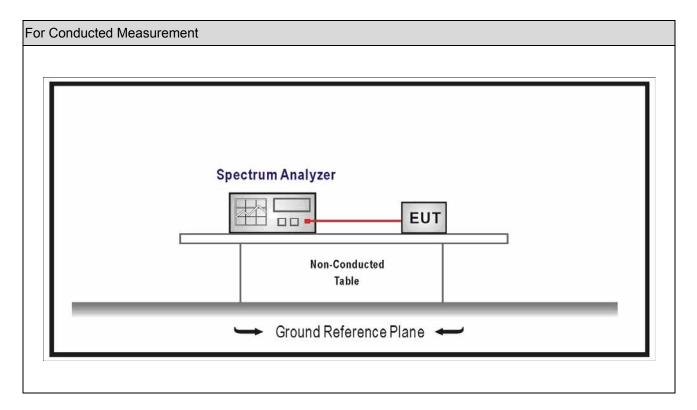
 $\mathsf{P} = \mathsf{A} + \mathsf{G} + \mathsf{Y}$ 

This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.



### 2.10Test Result

| Product   | : | Blazepod                |
|-----------|---|-------------------------|
| Model No. | : | Blazepod                |
| Test Item | : | RF Output Power         |
| Test Site | : | TR8                     |
| Test Mode | : | Mode 1: Transmit by BLE |


| Test Conditions | Frequency<br>(MHz) | Reading Values<br>(dBm) | RF Output Power<br>(dBm) | Limit<br>(dBm) |
|-----------------|--------------------|-------------------------|--------------------------|----------------|
|                 | 2402               | 2.53                    | 4.45                     | 20             |
| Tnom (25 )      | 2440               | 1.97                    | 3.89                     | 20             |
| , , ,           | 2480               | 2.00                    | 3.92                     | 20             |
|                 | 2402               | 2.34                    | 4.26                     | 20             |
| Tmax (45 )      | 2440               | 1.79                    | 3.71                     | 20             |
|                 | 2480               | 1.87                    | 3.79                     | 20             |
|                 | 2402               | 2.86                    | 4.78                     | 20             |
| Tmin (-25 )     | 2440               | 2.17                    | 4.09                     | 20             |
|                 | 2480               | 2.30                    | 4.22                     | 20             |

#### **3** Power Spectral Density

#### 3.1 Test Equipment

| Power Spectral Density / TR-8                                                                                     |              |          |            |               |  |
|-------------------------------------------------------------------------------------------------------------------|--------------|----------|------------|---------------|--|
| Instrument                                                                                                        | Manufacturer | Туре No. | Serial No. | Cal. Due Date |  |
| Spectrum Analyzer                                                                                                 | Agilent      | N9010A   | MY48030494 | 2019.02.03    |  |
| Temperature/Humidity Meter                                                                                        | Zhichen      | ZC1-2    | TR8-TH     | 2019.04.10    |  |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or |              |          |            |               |  |
| international standards.                                                                                          |              |          |            |               |  |

#### 3.2 Test Setup



#### 3.3 Limit

For adaptive equipment using wide band modulations other than FHSS

the maximum Power Spectral Density is limited to 10dBm per MHz.



#### 3.4 Test Procedure

| Test Method                                                                                                          |               |                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------|--|--|--|
| References Rule                                                                                                      | Chapter       | Description                                         |  |  |  |
| ETSI EN 300 328 V2.1.1                                                                                               | 5.4.3.2.1     | Power Spectral Density                              |  |  |  |
| Option 1:                                                                                                            | For equipm    | ent with continuous and non-continuous              |  |  |  |
|                                                                                                                      | transmissio   | ns                                                  |  |  |  |
| Option 2:                                                                                                            | For equipm    | ent with continuous transmission capability or for  |  |  |  |
|                                                                                                                      | equipment     | operating with a constant duty cycle                |  |  |  |
| Step 1                                                                                                               |               |                                                     |  |  |  |
| 1, Connect the UUT to the spectru                                                                                    | m analyser a  | and use the following settings:                     |  |  |  |
| Start Frequency: 2 400 MHz                                                                                           | Stop Frequ    | iency: 2 483,5 MHz                                  |  |  |  |
| Resolution BW: 10 kHz Video                                                                                          | BW: 30        | kHz                                                 |  |  |  |
| Sweep Points: > 8 350                                                                                                |               |                                                     |  |  |  |
| NOTE: For spectrum analysers no                                                                                      | t supporting  | this number of sweep points, the frequency band may |  |  |  |
| be segmented.                                                                                                        |               |                                                     |  |  |  |
| Detector: RMS Trace Mode: Max                                                                                        | Hold          |                                                     |  |  |  |
| Sweep time: 10 s; the sweep time                                                                                     | may be incr   | eased further until a value where the sweep time    |  |  |  |
| has no impact on the RMS value o                                                                                     | of the signal |                                                     |  |  |  |
| For non-continuous signals, wait for the trace to stabilize.                                                         |               |                                                     |  |  |  |
| Save the data (trace data) set to a file.                                                                            |               |                                                     |  |  |  |
| Step 2                                                                                                               | Step 2        |                                                     |  |  |  |
| For conducted measurements on smart antenna systems using either operating mode 2 or operating                       |               |                                                     |  |  |  |
| mode 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each                         |               |                                                     |  |  |  |
| sampling point (frequency domain), add up the coincident power values (in mW) for the different                      |               |                                                     |  |  |  |
| transmit chains and use this as the new data set.                                                                    |               |                                                     |  |  |  |
| Step 3                                                                                                               |               |                                                     |  |  |  |
| Add up the values for power for all the samples in the file using the formula below.                                 |               |                                                     |  |  |  |
| $P_{Sum} = \sum_{n=1}^{k} P_{sample}(n)$ with 'k' being the total number of samples and 'n' the actual sample number |               |                                                     |  |  |  |
| Step 4                                                                                                               |               |                                                     |  |  |  |
| Normalize the individual values for power (in dBm) so that the sum is equal to the RF Output Power                   |               |                                                     |  |  |  |
| (e.i.r.p.) measured in clause 5.4.2 and save the corrected data. The following formulas can be used:                 |               |                                                     |  |  |  |
| Ccorr=Psum-Pe.r.i.p. Psamplecorr(n)=Psample (n)-Ccorr                                                                |               |                                                     |  |  |  |
| with 'n' being the actual sample number                                                                              |               |                                                     |  |  |  |
| Step 5                                                                                                               |               |                                                     |  |  |  |
|                                                                                                                      |               |                                                     |  |  |  |

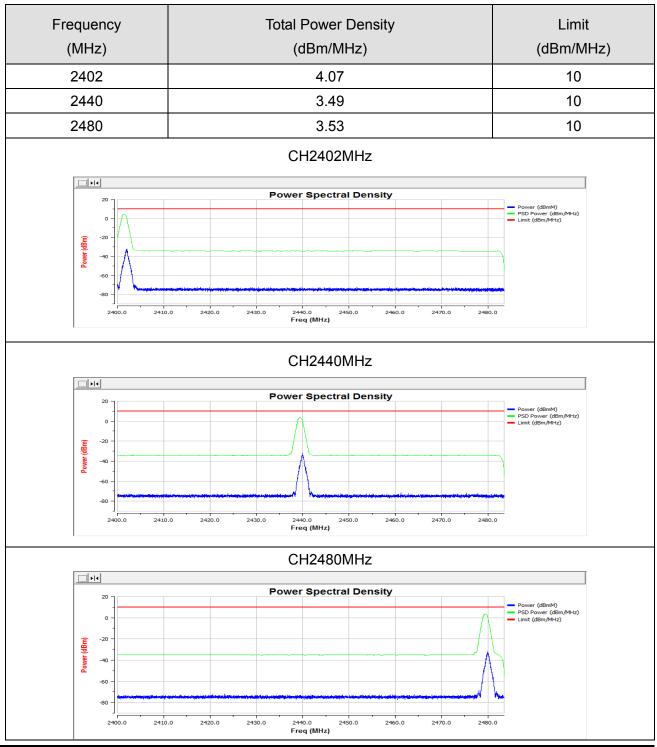


Starting from the first sample PSamplecorr(n) (lowest frequency), add up the power (in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to sample #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.

#### Step 6

Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to sample #101).

Step 7


Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.

From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3, shall be recorded in the test report.

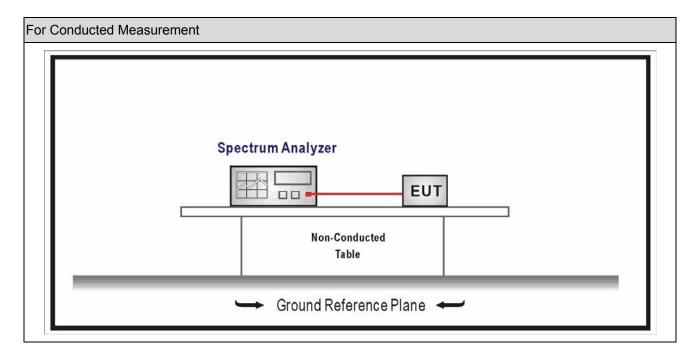


#### 3.5 Test Result

| Product   | •   | Blazepod                |
|-----------|-----|-------------------------|
| Model No. | • • | Blazepod                |
| Test Item | • • | Power Spectral Density  |
| Test Site | • • | TR-8                    |
| Test Mode | ••• | Mode 1: Transmit by BLE |



Page: 26 of 67




#### 4 Duty Cycle, Tx-sequence, Tx-gap

#### 4.1 Test Equipment

| Duty Cycle, Tx-sequence, Tx-gap / TR-8                                                                            |              |          |            |               |
|-------------------------------------------------------------------------------------------------------------------|--------------|----------|------------|---------------|
| Instrument                                                                                                        | Manufacturer | Type No. | Serial No. | Cal. Due Date |
| Spectrum Analyzer                                                                                                 | Agilent      | N9010A   | MY48030494 | 2019.02.03    |
| Temperature/Humidity Meter                                                                                        | Zhichen      | ZC1-2    | TR8-TH     | 2019.04.10    |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or |              |          |            |               |
| international standards.                                                                                          |              |          |            |               |

#### 4.2 Test Setup



#### 4.3 Limit

For non-adaptive equipment using wide band modulations other than FHSS

1, The Duty Cycle shall be equal to or less than the maximum value declared by the supplier.

2,The maximum Tx-sequence Time and the minimum Tx-gap Time shall be according to the formula below:

3,Maximum Tx-Sequence Time = Minimum Tx-gap Time = M

where M is in the range of 3,5 ms to 10 ms.



#### **4.4 Test Procedure**

|             | References Rule                                                                                        | Chapter         | Description                                               |  |  |
|-------------|--------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|--|--|
| $\boxtimes$ | ETSI EN 300 328 V2.1.1                                                                                 | -               | Duty Cycle, Tx-sequence, Tx-gap                           |  |  |
| _           |                                                                                                        | 0.1.2.2.1.0     |                                                           |  |  |
| Step        |                                                                                                        |                 |                                                           |  |  |
|             |                                                                                                        | •               | s from the procedure described in clause 5.3.2.2.1.2.     |  |  |
|             |                                                                                                        |                 | points where the power is at least 30 dB below the        |  |  |
| -           | -                                                                                                      |                 | f insufficient dynamic range, the value of 30 dB may      |  |  |
|             | d to be reduced appropriately                                                                          |                 |                                                           |  |  |
| Step        | 2                                                                                                      |                 |                                                           |  |  |
|             | veen the saved start and stop<br>n values.                                                             | times of eacl   | h individual burst, calculate the TxOn time. Save thes    |  |  |
| Step        | 3                                                                                                      |                 |                                                           |  |  |
| 1, D        | uty Cycle is the sum of all Tx                                                                         | On times bet    | ween the end of the first gap (which is the start of the  |  |  |
| first       | burst within the observation p                                                                         | period) and th  | e start of the last burst (within this observation period |  |  |
| divic       | led by the observation period                                                                          | . The observa   | ation period is defined in clause 4.3.1.3.2 or clause     |  |  |
| 4.3.2       | 2.4.2.                                                                                                 |                 |                                                           |  |  |
| 2, Fo       | or equipment using blacklistir                                                                         | ig, the TxOn    | time measured for a single (and active) hopping           |  |  |
| freq        | uency shall be multiplied by t                                                                         | he number of    | blacklisted frequencies. This value shall be added to     |  |  |
| the s       | sum calculated in the previou                                                                          | s bullet point. | If the number of blacklisted frequencies cannot be        |  |  |
| dete        | determined, the minimum number of hopping frequencies (N) as defined in clause 4.3.1.4.3 shall be      |                 |                                                           |  |  |
| assı        | umed.                                                                                                  |                 |                                                           |  |  |
| 3, TI       | he above calculated value for                                                                          | Duty Cycle s    | shall be recorded in the test report. This value shall b  |  |  |
| equa        | al to or less than the maximu                                                                          | m value decla   | ared by the supplier.                                     |  |  |
| Step        | 9 4                                                                                                    |                 |                                                           |  |  |
| 1, U        | se the same stored measure                                                                             | ment samples    | s from the procedure described in clause 5.4.2.2.1.2.     |  |  |
| 2, Id       | lentify any TxOff time that is e                                                                       | equal to or gre | eater than the minimum Tx-gap time as defined in          |  |  |
| clau        | clause 4.3.1.3.3 or clause 4.3.2.4.3. These are the potential valid gap times to be further considered |                 |                                                           |  |  |
| in th       | is procedure.                                                                                          |                 |                                                           |  |  |
| 3, St       | tarting from the second identi                                                                         | fied gap, calc  | ulate the time from the start of this gap to the end of   |  |  |
| the p       | the preceding gap. This time is the Tx-sequence time for this transmission. Repeat this procedure      |                 |                                                           |  |  |
| until       | until the last identified gap within the observation period is reached.                                |                 |                                                           |  |  |
| 4, Aı       | 4, Any Tx-sequence time shall be less than or equal to the maximum range defined in clause             |                 |                                                           |  |  |
| 4.3.´       | 4.3.1.3.3 or clause 4.3.2.4.3 and followed by a Tx-gap time that is equal to or greater than its       |                 |                                                           |  |  |
| prec        | preceding Tx-sequence time.                                                                            |                 |                                                           |  |  |
| 5, A        | 5, A combination of consecutive Tx-sequence times and Tx-gap times followed by a Tx-gap time,          |                 |                                                           |  |  |
|             | ch is at least as long as the du                                                                       |                 |                                                           |  |  |



Tx-sequence time and in which case it shall comply with the limits defined in clause 4.3.1.3.3 or clause 4.3.2.4.3.

6, It shall be noted in the test report whether the UUT complies with the limits defined in clause 4.3.1.3.3 or clause 4.3.2.4.3.



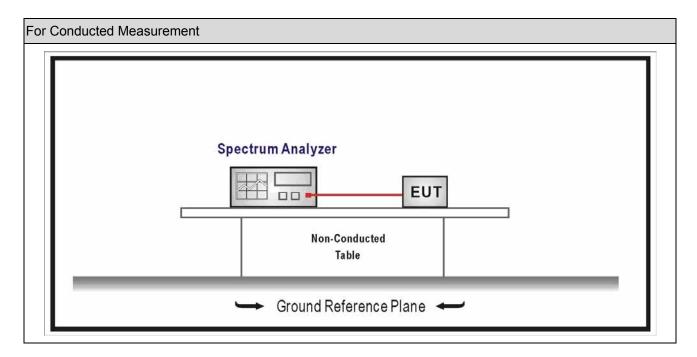
#### 4.5 Test Result

Item Not applicable as below:

These requirements apply to non-adaptive equipment or to adaptive equipment when operating in a non-adaptive mode.

The equipment is using wide band modulations other than FHSS.

These requirements do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.




#### 5 Medium Utilisation (MU) factor

#### 5.1 Test Equipment

| а                                                                                                                                          |              |          |            |               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|------------|---------------|--|--|
| Instrument                                                                                                                                 | Manufacturer | Type No. | Serial No. | Cal. Due Date |  |  |
| Spectrum Analyzer                                                                                                                          | Agilent      | N9010A   | MY48030494 | 2019.02.03    |  |  |
| Temperature/Humidity<br>Meter                                                                                                              | Zhichen      |          | TR8-TH     | 2019.04.10    |  |  |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards. |              |          |            |               |  |  |

#### 5.2 Test Setup



#### 5.3 Limit

For non-adaptive equipment using wide band modulations other than FHSS the maximum Medium Utilisation factor shall be 10 %.



#### 5.4 Test Procedure

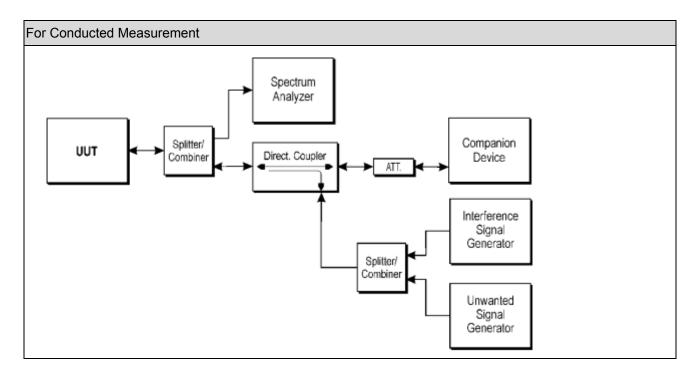
| Test                                                                                                  | Test Method                                                                                            |               |                                                   |  |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------|--|--|
|                                                                                                       | References Rule                                                                                        | Chapter       | Description                                       |  |  |
|                                                                                                       | ETSI EN 300 328 V2.1.1                                                                                 |               | Medium Utilisation (MU) factor                    |  |  |
| Step                                                                                                  | 1                                                                                                      |               |                                                   |  |  |
| Use                                                                                                   | the same stored measuremer                                                                             | it samples fr | om the procedure described in clause 5.4.2.2.1.2. |  |  |
| Step                                                                                                  | 2                                                                                                      |               |                                                   |  |  |
| For                                                                                                   | each burst calculate the produ                                                                         | ct of (Pburst | /100 mW) and the TxOn time.                       |  |  |
| NOTE 1: Pburst is expressed in mW. TxOn time is expressed in ms.                                      |                                                                                                        |               |                                                   |  |  |
| Step 3                                                                                                |                                                                                                        |               |                                                   |  |  |
| Medium Utilization is the sum of all these products divided by the observation period (expressed in   |                                                                                                        |               |                                                   |  |  |
| ms) which is defined in clause 4.3.1.3.2 or clause 4.3.2.4.2. This value, which shall comply with the |                                                                                                        |               |                                                   |  |  |
| limit given in clause 4.3.1.6.3 or clause 4.3.2.5.3, shall be recorded in the test report.            |                                                                                                        |               |                                                   |  |  |
| NOTE 2: If operation without blacklisted frequencies is not possible, the power of the bursts on      |                                                                                                        |               |                                                   |  |  |
| blac                                                                                                  | blacklisted hopping frequencies (for the calculation of the Medium Utilization) is assumed to be equal |               |                                                   |  |  |
| to th                                                                                                 | to the average value of the RMS power of the bursts on all active hopping frequencies.                 |               |                                                   |  |  |



#### 5.5 Test Result

Item Not applicable as below:

This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.




#### 6 Adaptivity (Adaptive equipment using modulations other than FHSS)

#### 6.1 Test Equipment

| Adaptivity & Blocking / TR-8                                                                                      |                      |                  |             |               |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-------------|---------------|--|
| Instrument                                                                                                        | Manufacturer         | Type No.         | Serial No   | Cal. Due Date |  |
| Spectrum Analyzer                                                                                                 | Agilent              | N9010A           | MY48030494  | 2019.02.03    |  |
| 10dB Coaxial Coupler                                                                                              | Agilent              | 87300C           | MY44300299  | N/A           |  |
| Splitter/Combiner (Otv: 2)                                                                                        | Mini Circuite        | ZAPD-50W 4.2-6.0 |             | N1/A          |  |
| Splitter/Combiner (Qty: 2)                                                                                        | Mini-Circuits<br>GHz |                  | NN256400424 | N/A           |  |
| Splitter/Combiner (Qty: 2)                                                                                        | MCLI                 | PS3-7            | 4463/4464   | N/A           |  |
| PSG Analog Signal                                                                                                 | Agilopt              | E8257D           | MY44321116  | 2019.02.03    |  |
| Generator                                                                                                         | Agilent              |                  |             |               |  |
| ESG Vector Signal                                                                                                 | Agilopt              | E4438C           | MY49070163  | 2019.02.03    |  |
| Generator                                                                                                         | Agilent              | E4430C           | MIT49070103 | 2019.02.03    |  |
| emperature/Humidity                                                                                               |                      | 701.0            |             | 2010 04 10    |  |
| Aeter Zhichen ZC1-2 TR8-TH 2019.04.10                                                                             |                      |                  |             |               |  |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or |                      |                  |             |               |  |
| international standards.                                                                                          |                      |                  |             |               |  |

#### 6.2 Test Setup





#### 6.3 Limit

| For         | adaptive equipment using wide band modulations other than FHSS                                  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | Non-LBT based Detect and Avoid                                                                  |  |  |  |  |  |
|             | (1) The channel shall remain unavailable for a minimum time equal to 1 s                        |  |  |  |  |  |
|             | after which the channel may be considered again as an 'available' channel;                      |  |  |  |  |  |
|             | (2) COT ≤ 40 ms;                                                                                |  |  |  |  |  |
|             | (3) Idle Period shall be minimum 5% of COT with a minimum of 100 $\mu$ s;                       |  |  |  |  |  |
|             | (4) Detection threshold level = -70 dBm/MHz + 10 × log10 (100 mW / Pout)                        |  |  |  |  |  |
|             | (Pout in mW e.i.r.p.);                                                                          |  |  |  |  |  |
|             | (5) To verify that the UUT is not resuming normal transmissions as long as the interference an  |  |  |  |  |  |
|             | unwanted signal are present, the monitoring time may need to be 60 s or more.                   |  |  |  |  |  |
|             | LBT based Detect and Avoid(Frame Based Equipment)                                               |  |  |  |  |  |
|             | (1) The CCA observation time shall be not less than $18 \mu s;$                                 |  |  |  |  |  |
|             | (2) The CCA time used by the equipment shall be declared by the supplier;                       |  |  |  |  |  |
|             | (3) COT = 1-10 ms;                                                                              |  |  |  |  |  |
|             | (4) Idle Period = 5% of COT;                                                                    |  |  |  |  |  |
|             | (5) Detection threshold level = -70 dBm/MHz + 10 × log10 (100 mW / Pout)                        |  |  |  |  |  |
|             | (Pout in mW e.i.r.p.);                                                                          |  |  |  |  |  |
|             | (6) To verify that the UUT is not resuming normal transmissions as long as the interference and |  |  |  |  |  |
|             | unwanted signal are present, the monitoring time may need to be 60 s or more.                   |  |  |  |  |  |
| $\boxtimes$ | LBT based Detect and Avoid(Load Based Equipment)                                                |  |  |  |  |  |
|             | (1) The CCA observation time shall be not less than 18 $\mu$ s;                                 |  |  |  |  |  |
|             | (2) Extended CCA time shall be between 18 $\mu$ s and 160 $\mu$ s;                              |  |  |  |  |  |
|             | (3) COT ≤ 13ms;                                                                                 |  |  |  |  |  |
|             | (4) Detection threshold level = -70 dBm/MHz + 10 × log10 (100 mW / Pout)                        |  |  |  |  |  |
|             | (Pout in mW e.i.r.p.);                                                                          |  |  |  |  |  |
|             | (5) To verify that the UUT is not resuming normal transmissions as long as the interference and |  |  |  |  |  |
|             | unwanted signal are present, the monitoring time may need to be 60 s or more.                   |  |  |  |  |  |
| $\square$   | Short Control Signalling Transmissions:                                                         |  |  |  |  |  |
|             | (1) Short Control Signalling Transmissions shall have a maximum duty cycle                      |  |  |  |  |  |
|             | of 10% within an observation period of 50ms.                                                    |  |  |  |  |  |
| $\square$   | Unwanted signal                                                                                 |  |  |  |  |  |
| $\bowtie$   |                                                                                                 |  |  |  |  |  |



#### 6.4 Test Procedure

| Test Method                                                                                            |                                                 |               |                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------|---------------------------------------------------------|--|--|--|
|                                                                                                        | References Rule                                 | Chapter       | Description                                             |  |  |  |
| $\boxtimes$                                                                                            | ETSI EN 300 328 V2.1.1                          | 5.4.6.2.1.4   | Adaptivity                                              |  |  |  |
| The                                                                                                    | different steps below define th                 | e procedure   | to verify the efficiency of the LBT based adaptive      |  |  |  |
| mecl                                                                                                   | hanism of equipment using wi                    | de band mo    | dulations other than FHSS. This method can be           |  |  |  |
| appli                                                                                                  | ied on Load Based Equipment                     | and Frame     | Based Equipment.                                        |  |  |  |
| Step                                                                                                   | 1                                               |               |                                                         |  |  |  |
| 1, Tł                                                                                                  | ne UUT shall connect to a com                   | panion devi   | ice during the test. The interference signal generator, |  |  |  |
| the ι                                                                                                  | inwanted signal generator, the                  | spectrum a    | analyser, the UUT and the companion device are          |  |  |  |
| conn                                                                                                   | nected using a set-up equivale                  | nt to the exa | ample given by figure 5 although the interference and   |  |  |  |
| unwa                                                                                                   | anted signal generator do not                   | generate an   | y signals at this point in time. The spectrum analyser  |  |  |  |
| is us                                                                                                  | ed to monitor the transmissior                  | ns of both th | e UUT and the companion device and it should be         |  |  |  |
| poss                                                                                                   | ible to distinguish between eit                 | her transmis  | ssion. In addition, the spectrum analyser is used to    |  |  |  |
| mon                                                                                                    | itor the transmissions of the U                 | UT in respo   | nse to the interfering and the unwanted signals         |  |  |  |
| 2, Ac                                                                                                  | ljust the received signal level                 | (wanted sigi  | nal from the companion device) at the UUT to the        |  |  |  |
| value                                                                                                  | e defined in table 10 (clause 4                 | .3.2.6.3.2.2) | ) for Frame Based Equipment or in table 11 (clause      |  |  |  |
| 4.3.2                                                                                                  | 2.6.3.2.3) for Load Based Equi                  | pment.        |                                                         |  |  |  |
| Testi                                                                                                  | ng of Unidirectional equipmen                   | t does not r  | equire a link to be established with a companion        |  |  |  |
| devi                                                                                                   | ce.                                             |               |                                                         |  |  |  |
| 3, Tł                                                                                                  | ne analyser shall be set as foll                | ows:          |                                                         |  |  |  |
| (1)RBW: Occupied Channel Bandwidth (if the analyser does not support this setting, the                 |                                                 |               |                                                         |  |  |  |
| high                                                                                                   | est available setting shall be u                | sed)          |                                                         |  |  |  |
| (2)VBW: 3 × RBW (if the analyser does not support this setting, the highest available setting          |                                                 |               |                                                         |  |  |  |
| shall                                                                                                  | be used)                                        |               |                                                         |  |  |  |
| (3)D                                                                                                   | etector Mode: RMS                               |               |                                                         |  |  |  |
| (4)C                                                                                                   | entre Frequency: Equal to the                   | centre frequ  | uency of the operating channel                          |  |  |  |
| (5)Span: 0 Hz                                                                                          |                                                 |               |                                                         |  |  |  |
| (6)Sv                                                                                                  | (6)Sweep time: > maximum Channel Occupancy Time |               |                                                         |  |  |  |
| (7)Trace Mode: Clear Write                                                                             |                                                 |               |                                                         |  |  |  |
| (8)Trigger Mode: Video                                                                                 |                                                 |               |                                                         |  |  |  |
| Step 2                                                                                                 |                                                 |               |                                                         |  |  |  |
| 1, Configure the UUT for normal transmissions with a sufficiently high payload resulting in a          |                                                 |               |                                                         |  |  |  |
| minimum transmitter activity ratio (TxOn / (TxOn + TxOff)) of 0.3. Where this is not possible, the ULT |                                                 |               |                                                         |  |  |  |

minimum transmitter activity ratio (TxOn / (TxOn + TxOff)) of 0,3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

2, For Frame Based Equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period



defined in clause 4.3.2.6.3.2.2 step 3).

3, For Load Based equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.3.

For the purpose of testing Load Based Equipment referred to in the first paragraph of clause 4.3.2.6.3.2.3 (IEEE 802.11<sup>™</sup> [i.3] or IEEE 802.15.4<sup>™</sup> [i.4] equipment), the limits to be applied for the minimum Idle Period and the maximum Channel Occupancy Time are the same as defined for other types of Load Based Equipment (see clause 4.3.2.6.3.2.3 step 2) and step 3). The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3 step 1) and step 2).

Step 3: Adding the interference signal

An interference signal as defined in clause B.6 is injected on the current operating channel of the UUT. The power spectral density level (at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clause 4.3.2.6.3.2.2 step 5) (frame based equipment) or clause 4.3.2.6.3.2.3 step 5) (load based equipment).

Step 4: Verification of reaction to the interference signal

1, The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep

to be triggered by the start of the interfering signal.

2, Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) The UUT shall stop transmissions on the current operating channel.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel

Occupancy Time defined in clause 4.3.2.6.3.2.2 (frame based equipment) or clause 4.3.2.6.3.2.3 (load based equipment).

ii) Apart from Short Control Signalling Transmissions, there shall be no subsequent transmissions while the interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

1, With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.



2, The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating.

3, Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) he UUT shall not resume normal transmissions on the current operating channel as long as both the interference and unwanted signals remain present.

NOTE 6: To verify that the UUT is not resuming normal transmissions as long as the interference and unwanted signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering and unwanted signals are present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signals the UUT is allowed to start transmissions again on this channel; however, this is not a requirement and, therefore, does not require testing.

Step 7: Removing the interference and unwanted signal

Step 2 to step 6 shall be repeated for each of the frequencies to be tested.

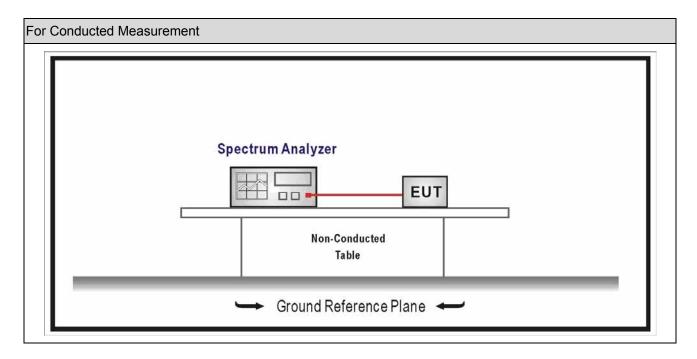


Item Not applicable as below:

This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

Not applicable.




## 7 Occupied Channel Bandwidth

#### 7.1 Test Equipment

| Occupied Channel Bandwidth / TR-8                                                                                                          |              |          |            |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|------------|---------------|--|
| Instrument                                                                                                                                 | Manufacturer | Туре No. | Serial No. | Cal. Due Date |  |
| Spectrum Analyzer                                                                                                                          | Agilent      | N9010A   | MY48030494 | 2019.02.03    |  |
| Temperature/Humidity<br>Meter                                                                                                              | Zhichen      | ZC1-2    | TR8-TH     | 2019.04.10    |  |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards. |              |          |            |               |  |

## 7.2 Test Setup



#### 7.3 Limit

For adaptive equipment using wide band modulations other than FHSS

The Occupied Channel Bandwidth shall fall completely within the band given in 2.4GHz to 2.4835GHz.

For Non-adaptive equipment using wide band modulations other than FHSS

In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.



# 7.4 Test Procedure

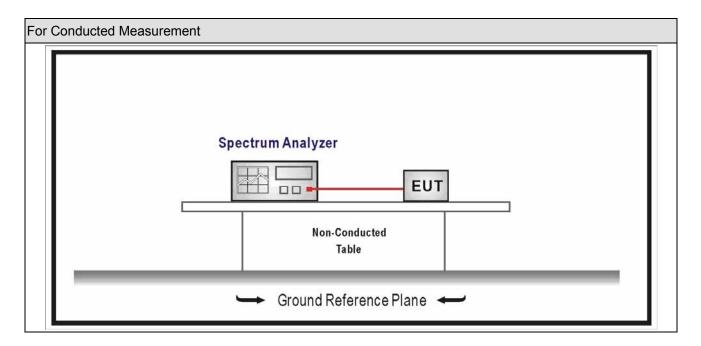
| Test Method                                                                                      |               |                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------|--|--|--|
| References Rule                                                                                  | Chapter       | Description                                       |  |  |  |
| ETSI EN 300 328 V2.1.1                                                                           | 5.4.7.2.1     | Occupied Channel Bandwidth                        |  |  |  |
| Step 1                                                                                           |               |                                                   |  |  |  |
| 1, Connect the UUT to the spect                                                                  | rum analyser  | and use the following settings                    |  |  |  |
| (1),Centre Frequency: The centre                                                                 | e frequency o | of the channel under test                         |  |  |  |
| (2),Resolution BW: ~ 1 % of the                                                                  | span without  | going below 1 %                                   |  |  |  |
| (3),Video BW: 3 × RBW                                                                            |               |                                                   |  |  |  |
| (4),Frequency Span for frequenc                                                                  | y hopping eq  | uipment: Lowest frequency separation that is used |  |  |  |
| within the hopping sequence                                                                      |               |                                                   |  |  |  |
| (5), Frequency Span for other typ                                                                | es of equipm  | nent: 2 × Nominal Channel Bandwidth (e.g. 40 MHz  |  |  |  |
| for a 20 MHz channel)                                                                            |               |                                                   |  |  |  |
| (6), Detector Mode: RMS                                                                          |               |                                                   |  |  |  |
| (7), Trace Mode: Max Hold                                                                        |               |                                                   |  |  |  |
| (8), Sweep time: 1 s                                                                             |               |                                                   |  |  |  |
| Step 2                                                                                           |               |                                                   |  |  |  |
| Wait for the trace to stabilize.                                                                 |               |                                                   |  |  |  |
| Find the peak value of the trace                                                                 | and place the | analyser marker on this peak.                     |  |  |  |
| Step 3                                                                                           |               |                                                   |  |  |  |
| Use the 99 % bandwidth function                                                                  | of the spectr | rum analyser to measure the Occupied Channel      |  |  |  |
| Bandwidth of the UUT. This value shall be recorded.                                              |               |                                                   |  |  |  |
| NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyser to |               |                                                   |  |  |  |
| avoid the noise signals left and right from the power envelope being taken into account by this  |               |                                                   |  |  |  |
| measurement.                                                                                     |               |                                                   |  |  |  |



| Product   | : | Blazepod                   |
|-----------|---|----------------------------|
| Model No. | : | Blazepod                   |
| Test Item | : | Occupied Channel Bandwidth |
| Test Mode | : | Mode 1: Transmit by BLE    |

| Channel No. | Frequency<br>(MHz) | 99% Bandwidth<br>(MHz) | Frequency near the operating band (MHz) | Result |
|-------------|--------------------|------------------------|-----------------------------------------|--------|
| 00          | 2402               | 1.773                  | 2401.082                                | Pass   |
| 39          | 2480               | 1.759                  | 2480.843                                | Pass   |





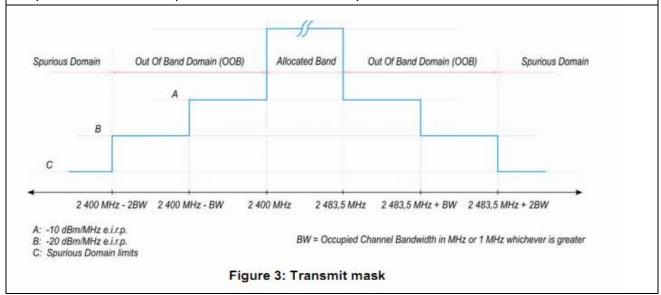

# 8 Transmitter unwanted emissions in the out-of-band domain

## 8.1 Test Equipment

| Transmitter unwanted emissions in the out-of-band domain / TR-8                                                   |               |               |               |               |
|-------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|
| Instrument                                                                                                        | Manufacturer  | Type No.      | Serial No.    | Cal. Due Date |
| Spectrum Analyzer                                                                                                 | Agilent       | N9010A        | MY48030494    | 2019.02.03    |
| DC Power Supply                                                                                                   | IDRC          | CD-035-020PR  | 977272        | 2018.09.04    |
| Temperature & Humidity                                                                                            | Gaoviu        | TH-1P-B       | WIT-05121302  | 2019.01.03    |
| Chamber                                                                                                           | Gaoyu         |               | VVII-03121302 | 2019.01.05    |
| Temperature/Humidity                                                                                              | Zhichen       | ZC1-2         | TR8-TH        | 2019.04.10    |
| Meter                                                                                                             | Zhichen       | 201-2         |               | 2019.04.10    |
| Power Splitter                                                                                                    | Mini-Circuits | ZN4PD-642W-S+ | SF344301603   | N/A           |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or |               |               |               |               |
| international standards.                                                                                          |               |               |               |               |

# 8.2 Test Setup






#### 8.3 Limit

For adaptive equipment using wide band modulations other than FHSS

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

NOTE: Within the 2 400 MHz to 2 483,5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement.



# 8.4 Test Procedure

| Test                      | Method                        |              |                                                         |  |  |
|---------------------------|-------------------------------|--------------|---------------------------------------------------------|--|--|
|                           | References Rule               | Chapter      | Description                                             |  |  |
| $\square$                 | ETSI EN 300 328 V2.1.1        | 5.4.8.2.1    | Transmitter unwanted emissions in the out-of-band       |  |  |
|                           |                               |              | domain                                                  |  |  |
| The                       | Out-of-band emissions within  | the differen | t horizontal segments of the mask provided in figures 1 |  |  |
| and                       | 3 shall be measured using the | e steps belo | w. This method assumes the spectrum analyser is         |  |  |
| equi                      | oped with the Time Domain P   | ower option  | I.                                                      |  |  |
| Step                      | 1                             |              |                                                         |  |  |
| 1, Co                     | onnect the UUT to the spectru | ım analyser  | and use the following settings                          |  |  |
| (1), (                    | Centre Frequency: 2 484 MHz   | 2            |                                                         |  |  |
| (2), 8                    | Span: 0 Hz                    |              |                                                         |  |  |
| (3), F                    | (3), Resolution BW: 1 MHz     |              |                                                         |  |  |
| (4), Video BW: 3 MHz      |                               |              |                                                         |  |  |
| (5), Detector Mode: RMS   |                               |              |                                                         |  |  |
| (6), Trace Mode: Max Hold |                               |              |                                                         |  |  |



(7), Sweep Mode: Continuous

(8), Sweep Points: Sweep Time [s] / (1 μs) or 5 000 whichever is greater

(9), Trigger Mode: Video trigger

NOTE 1: In case video triggering is not possible, an external trigger source may be used.

(10), Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Step 2(segment 2 483,5 MHz to 2 483,5 MHz + BW):

1, Adjust the trigger level to select the transmissions with the highest power level.

2,For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

3,Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

4,Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

5,Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3(segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW):

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 4 (segment 2 400 MHz - BW to 2 400 MHz):

Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5 (segment 2 400 MHz - 2BW to 2 400 MHz - BW):

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).



#### Step 6 (segment 2 400 MHz - 2BW to 2 400 MHz - BW):

1, In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figure 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. 2, In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:

(1),Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.

(2)Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by

10 × log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

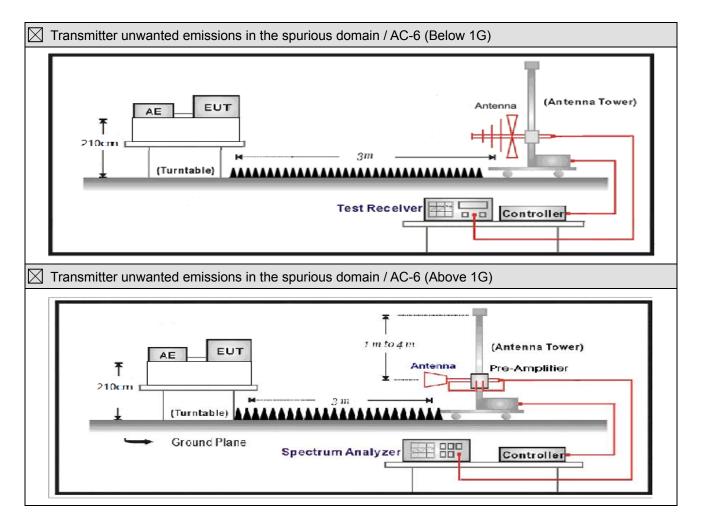
It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.



| Product   | :   | Blazepod                                                 |
|-----------|-----|----------------------------------------------------------|
| Model No. | ••• | Blazepod                                                 |
| Test Item | ••• | Transmitter unwanted emissions in the out-of-band domain |
| Test Site | :   | TR8                                                      |
| Test Mode | :   | Mode 1: Transmit by BLE                                  |

| Antenna Gain =1.92dBi                                    |                           |                                |                                     |                    |
|----------------------------------------------------------|---------------------------|--------------------------------|-------------------------------------|--------------------|
| Frequency<br>(MHz)                                       | Test<br>Conditions<br>( ) | Reading<br>Values<br>(dBm/MHz) | Max measured<br>Values<br>(dBm/MHz) | Limit<br>(dBm/MHz) |
| 2400–2BW~2400-BW                                         | 25                        | -62.50                         | -60.58                              | -20                |
| 2400–BW~2400                                             | 25                        | -55.81                         | -53.89                              | -10                |
| 2483.5~2483.5+BW                                         | 25                        | -62.60                         | -60.68                              | -10                |
| 2483.5+BW~2483.5+2BW                                     | 25                        | -62.66                         | -60.74                              | -20                |
| Maximum measured values = Reading Values + Antenna Gain. |                           |                                |                                     |                    |




# 9 Transmitter unwanted emissions in the spurious domain

# 9.1 Test Equipment

| Transmitter unwanted emissions in the spurious domain / TR-8                                                                               |              |             |            |               |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------|---------------|
| Instrument                                                                                                                                 | Manufacturer | Type No.    | Serial No. | Cal. Due Date |
| Spectrum Analyzer                                                                                                                          | Agilent      | N9010A      | MY48030494 | 2019.02.03    |
| Spectrum Analyzer                                                                                                                          | Agilent      | E4440A      | MY49420184 | 2019.02.03    |
| PSG Analog S.G.                                                                                                                            | Agilent      | E8257D      | MY44321116 | 2019.03.10    |
| Preamplifier                                                                                                                               | chengyi      | EMC012645SE | 980262     | 2019.06.13    |
| Bilog Antenna                                                                                                                              | Schaffner    | CBL6112B    | 2932       | 2018.09.24    |
| Half Wave Tuned Dipole<br>Antenna                                                                                                          | COM-POWER    | AD-100      | 40137      | 2019.07.26    |
| Broad-Band Horn<br>Antenna                                                                                                                 | Schwarzbeck  | BBHA9120D   | 737        | 2019.03.06    |
| Filter Banks                                                                                                                               | QuieTek      | QTK-FB      | AC6-FB     | 2019.05.03    |
| Temperature/Humidity<br>Meter                                                                                                              | zhichen      | ZC1-2       | AC6-TH     | 2019.01.04    |
| Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards. |              |             |            |               |



# 9.2 Test Setup





# 9.3 Limit

### For adaptive equipment using wide band modulations other than FHSS

| Frequency Range₽     | Maximum power⊷     | Bandwidth₽           |
|----------------------|--------------------|----------------------|
|                      | E.R.P. (≤ 1GHz)⊷   |                      |
|                      | E.I.R.P. (> 1GHz)₽ |                      |
| 30 MHz to 47 MHz 🖉   | -36 dBm₽           | 100 kHz↩             |
| 47 MHz to 74 MHz₽    | -54 dBm√           | 100 kHz↩             |
| 74 MHz to 87,5 MHz₽  | -36 dBm₽           | 100 kHz↩             |
| 87,5 MHz to 118 MHz₽ | -54 dBm₽           | 100 kHz₊ <sup></sup> |
| 118 MHz to 174 MHz₽  | -36 dBm₽           | 100 kHz₊             |
| 174 MHz to 230 MHz₽  | -54 dBm₽           | 100 kHz₊             |
| 230 MHz to 470 MHz₽  | -36 dBm₽           | 100 kHz↩             |
| 470 MHz to 862 MHz₽  | -54 dBm₽           | 100 kHz↩             |
| 862 MHz to 1 GHz₽    | -36 dBm₽           | 100 kHz₽             |
| 1 GHz to 12,75 GHz+  | -30 dBm₽           | 1 MHz₽               |



# 9.4 Test Procedure

| Test      | Method                                                                                                                                 |              |                                                              |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|--|--|--|--|
|           | References Rule                                                                                                                        | Chapter      | Description                                                  |  |  |  |  |
| $\square$ | ETSI EN 300 328 V2.1.1                                                                                                                 | 5.4.9.2.2    | Radiated measurement                                         |  |  |  |  |
|           | Step 1                                                                                                                                 |              |                                                              |  |  |  |  |
|           | · · ·                                                                                                                                  | neasuremen   | It set-up should be such that the noise floor is at least 12 |  |  |  |  |
|           | dB below the limits give                                                                                                               |              | -                                                            |  |  |  |  |
|           | Step 2                                                                                                                                 |              |                                                              |  |  |  |  |
|           | The emissions over the                                                                                                                 | e range 30 I | MHz to 1 000 MHz shall be identified.                        |  |  |  |  |
|           | Spectrum analyser settings:                                                                                                            |              |                                                              |  |  |  |  |
|           | (1),Resolution bandwid                                                                                                                 | Z            |                                                              |  |  |  |  |
|           | (2),Video bandwidth: 3                                                                                                                 | 00 kHz       |                                                              |  |  |  |  |
|           | (3),Filter type: 3 dB (G                                                                                                               | aussian)     |                                                              |  |  |  |  |
|           | (4),Detector mode: Pea                                                                                                                 | ak           |                                                              |  |  |  |  |
|           | (5),Trace Mode: Max H                                                                                                                  | lold         |                                                              |  |  |  |  |
|           | (6),Sweep Points:                                                                                                                      | 19 400       |                                                              |  |  |  |  |
|           | NOTE 1: For spectrum analysers not supporting this high number of swee                                                                 |              |                                                              |  |  |  |  |
|           | frequency band may n                                                                                                                   | eed to be se | egmented.                                                    |  |  |  |  |
|           | (7)Sweep time: For non continuous transmissions (duty cycle less than 100 %), the swe                                                  |              |                                                              |  |  |  |  |
|           | time shall be sufficiently long, such that for each 100 kHz frequency step, the                                                        |              |                                                              |  |  |  |  |
|           | measurement time is greater than two transmissions of the UUT, on any channel.                                                         |              |                                                              |  |  |  |  |
|           | For Frequency Hopping equipment operating in a normal operating (hopping not                                                           |              |                                                              |  |  |  |  |
|           | disabled) mode, the sweep time shall be further increased to capture multiple                                                          |              |                                                              |  |  |  |  |
|           | transmissions on any of the hopping frequencies.<br>NOTE 2: The above sweep time setting may result in long measuring times in case of |              |                                                              |  |  |  |  |
|           |                                                                                                                                        |              |                                                              |  |  |  |  |
|           |                                                                                                                                        | ipment. To   | avoid such long measuring times, an FFT analyser             |  |  |  |  |
|           | could be used.                                                                                                                         |              |                                                              |  |  |  |  |
|           |                                                                                                                                        | •            | nissions identified during the sweeps above and that fall    |  |  |  |  |
|           |                                                                                                                                        | -            | oplicable limit or above, shall be individually measured     |  |  |  |  |
|           | •                                                                                                                                      | clause 5.4.  | 9.2.1.3 and compared to the limits given in table 1 or       |  |  |  |  |
|           | table 4                                                                                                                                |              |                                                              |  |  |  |  |
|           | Step 3                                                                                                                                 | 4.0          |                                                              |  |  |  |  |
|           |                                                                                                                                        | •            | Hz to 12,75 GHz shall be identified.                         |  |  |  |  |
|           | Spectrum analyser set                                                                                                                  | •            |                                                              |  |  |  |  |
|           | (1),Resolution bandwid                                                                                                                 |              |                                                              |  |  |  |  |
|           | (2),Video bandwidth: 3                                                                                                                 |              |                                                              |  |  |  |  |
|           | (3),Filter type: 3 dB (G                                                                                                               | aussian)     |                                                              |  |  |  |  |



| (4),Detector mode: Peak                                                                     |
|---------------------------------------------------------------------------------------------|
| (5),Trace Mode: Max Hold                                                                    |
| (6),Sweep Points: 23 500                                                                    |
| NOTE 3: For spectrum analysers not supporting this high number of sweep points, the         |
| frequency band may need to be segmented.                                                    |
| (7)Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep     |
| time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement   |
| time is greater than two transmissions of the UUT, on any channel.                          |
| For Frequency Hopping equipment operating in a normal operating (hopping not disabled)      |
| mode, the sweep time shall be further increased to capture multiple transmissions on any    |
| of the hopping frequencies.                                                                 |
| NOTE 4: The above sweep time setting may result in long measuring times in case of          |
| frequency hopping equipment. To avoid such long measuring times, an FFT analyser            |
| could be used.                                                                              |
| Allow the trace to stabilize. Any emissions identified during the sweeps above that fall    |
| within the 6 dB range below the applicable limit or above, shall be individually measured   |
| using the procedure in clause 5.4.9.2.1.3 and compared to the limits given in table 1 or    |
| table 4.                                                                                    |
| Frequency Hopping equipment may generate a block (or several blocks) of spurious            |
| emissions anywhere within the spurious domain. If this is the case, only the highest peak   |
| of each block of emissions shall be measured using the                                      |
| procedure in clause 5.4.9.2.1.3.                                                            |
| Step 4                                                                                      |
| In case of conducted measurements on smart antenna systems (equipment with multiple         |
| transmit chains), step 2 and step 3 need to be repeated for each of the active transmit     |
| chains (Ach). The limits used to identify emissions during this pre-scan need to be reduced |
| with 10 × log10 (Ach) (number of active transmit chains).                                   |
| Measurement of the emissions identified during the pre-scan                                 |
| The steps below shall be used to accurately measure the individual unwanted emissions       |
| identified during the pre-scan measurements above. This method assumes the spectrum         |
| analyser has a Time Domain Power function                                                   |
| Step 1                                                                                      |
| The level of the emissions shall be measured using the following spectrum analyser          |
| settings:                                                                                   |
| (1),Measurement Mode: Time Domain Power                                                     |
| (2),Centre Frequency: Frequency of the emission identified during the pre-scan              |
| (3),Resolution Bandwidth: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)                               |
| (4),Video Bandwidth: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)                                    |

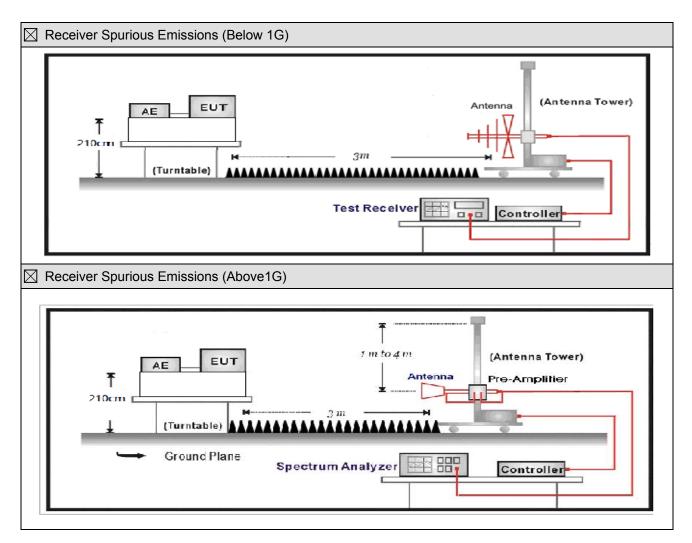


| (5),Frequency Span: Zero Span                                                               |
|---------------------------------------------------------------------------------------------|
| (6),Sweep mode: Single Sweep                                                                |
| (7),Sweep time: > 120 % of the duration of the longest burst detected during the            |
| measurement of the RF Output Power                                                          |
| (8),Sweep points: Sweep time [ $\mu$ s] / (1 $\mu$ s) with a maximum of 30 000              |
| (9),Trigger: Video (burst signals) or Manual (continuous signals)                           |
| (10),Detector: RMS                                                                          |
| Step 2                                                                                      |
| Set a window where the start and stop indicators match the start and end of the burst with  |
| the highest level and record the value of the power measured within this window.            |
| If the spurious emission to be measured is a continuous transmission, the measurement       |
| window shall be set to match the start and stop times of the sweep.                         |
| Step 3                                                                                      |
| In case of conducted measurements on smart antenna systems (equipment with multiple         |
| transmit chains), step 2 needs to be repeated for each of the active transmit chains (Ach). |
| Sum the measured power (within the observed window) for each of the active transmit         |
| chains.                                                                                     |
| Step 4                                                                                      |
| The value defined in step 3 shall be compared to the limits defined in tables 1 and 4.      |
|                                                                                             |

| Product                                                           | : | Blazepod                                              |
|-------------------------------------------------------------------|---|-------------------------------------------------------|
| Model No. : Blazepod                                              |   |                                                       |
| Test Item : Transmitter unwanted emissions in the spurious domain |   | Transmitter unwanted emissions in the spurious domain |
| Test Site :                                                       |   | AC-6                                                  |
| Test Mode :                                                       |   | Mode 1: Transmit by BLE                               |

|           | Mode 1: Transmit by BLE |               |       |            |          |  |  |
|-----------|-------------------------|---------------|-------|------------|----------|--|--|
| Frequency | Polarization            | Measure Level | Limit | Over Limit | Detector |  |  |
| (MHz)     | (H/V)                   | (dBm)         | (dBm) | (dB)       | Delector |  |  |
| (2402MHz) | (2402MHz)               |               |       |            |          |  |  |
| 136.9     | Н                       | -72.3         | -36   | -36.3      | PK       |  |  |
| 118.9     | V                       | -72.8         | -36   | -36.8      | PK       |  |  |
| 274.8     | Н                       | -71.3         | -36   | -35.3      | PK       |  |  |
| 253.3     | V                       | -74.2         | -36   | -38.2      | PK       |  |  |
| 4804.0    | Н                       | -55.2         | -30.0 | -25.2      | PK       |  |  |
| 4804.0    | V                       | -55.5         | -30.0 | -25.5      | PK       |  |  |
| 7206.0    | Н                       | -49.6         | -30.0 | -19.6      | PK       |  |  |
| 7206.0    | V                       | -50.2         | -30.0 | -20.2      | PK       |  |  |
| (2480MHz) |                         |               |       |            |          |  |  |
| 143.0     | Н                       | -74.7         | -36   | -38.7      | PK       |  |  |
| 148.2     | V                       | -72.0         | -36   | -36.0      | PK       |  |  |
| 361.8     | Н                       | -70.3         | -36   | -34.3      | PK       |  |  |
| 369.6     | V                       | -70.8         | -36   | -34.8      | PK       |  |  |
| 4960.0    | Н                       | -54.8         | -30.0 | -24.8      | PK       |  |  |
| 4960.0    | V                       | -55.8         | -30.0 | -25.8      | PK       |  |  |
| 7440.0    | Н                       | -49.3         | -30.0 | -19.3      | PK       |  |  |
| 7440.0    | V                       | -50.4         | -30.0 | -20.4      | PK       |  |  |




# 10 Receiver Spurious Emissions

# 10.1Test Equipment

| Receiver Spurious Emissi                            | ons / AC-6            |                         |                         |                        |
|-----------------------------------------------------|-----------------------|-------------------------|-------------------------|------------------------|
| Instrument                                          | Manufacturer          | Type No.                | Serial No.              | Cal. Due Date          |
| Spectrum Analyzer                                   | Agilent               | N9010A                  | MY48030494              | 2019.02.03             |
| Spectrum Analyzer                                   | Agilent               | E4440A                  | MY49420184              | 2019.02.03             |
| PSG Analog S.G.                                     | Agilent               | E8257D                  | MY44321116              | 2019.03.10             |
| Preamplifier                                        | chengyi               | EMC012645SE             | 980262                  | 2019.06.13             |
| Bilog Antenna                                       | Schaffner             | CBL6112B                | 2932                    | 2018.09.24             |
| Half Wave Tuned Dipole<br>Antenna                   | COM-POWER             | AD-100                  | 40137                   | 2019.07.26             |
| Broad-Band Horn<br>Antenna                          | Schwarzbeck           | BBHA9120D               | 737                     | 2019.03.06             |
| Filter Banks                                        | QuieTek               | QTK-FB                  | AC6-FB                  | 2019.05.03             |
| Temperature/Humidity<br>Meter                       | zhichen               | ZC1-2                   | AC6-TH                  | 2019.01.04             |
| Note: All equipments are o international standards. | calibrated with trace | able calibrations. Each | n calibration is tracea | ble to the national or |



# 10.2Test Setup



# 10.3Limit

| For adaptive equipment using wide band modulations other than FHSS |                              |                        |  |  |  |
|--------------------------------------------------------------------|------------------------------|------------------------|--|--|--|
|                                                                    |                              |                        |  |  |  |
| Spuri                                                              | ous emissions limits for rec | eivers⇔                |  |  |  |
| Frequency Range₽                                                   | Maximum power↩               | Measurement bandwidthe |  |  |  |
|                                                                    | E.R.P. (≤ 1GHz)↩             |                        |  |  |  |
|                                                                    | E.I.R.P. (> 1GHz)↩           |                        |  |  |  |
| 30 MHz to 1 GHz₽                                                   | -57 dBm↩                     | 100 kHz <i>⊷</i>       |  |  |  |
| 1 GHz to 12.75 GHz₽                                                | -47 dBm↩                     | 1 MHz₽                 |  |  |  |
|                                                                    |                              | ·                      |  |  |  |
|                                                                    |                              |                        |  |  |  |



### 10.4Test Procedure

| Test        | Method                                                                        |               |                                                           |  |  |  |  |
|-------------|-------------------------------------------------------------------------------|---------------|-----------------------------------------------------------|--|--|--|--|
|             | References Rule                                                               | Chapter       | Description                                               |  |  |  |  |
| $\boxtimes$ | ETSI EN 300 328 V2.1.1                                                        | 5.4.10.2.2    | Radiated measurement                                      |  |  |  |  |
|             | Step 1                                                                        |               |                                                           |  |  |  |  |
|             | The sensitivity of the s                                                      | pectrum and   | alyser should be such that the noise floor is at least 12 |  |  |  |  |
|             | dB below the limits given in table 2 or table 5.                              |               |                                                           |  |  |  |  |
|             | Step 2                                                                        |               |                                                           |  |  |  |  |
|             | The emissions over th                                                         | e range 30 l  | MHz to 1 000 MHz shall be identified.                     |  |  |  |  |
|             | Spectrum analyser set                                                         | ttings:       |                                                           |  |  |  |  |
|             | (1),Resolution bandwi                                                         | dth: 100 kHz  | Z                                                         |  |  |  |  |
|             | (2),Video bandwidth: 3                                                        | 300 kHz       |                                                           |  |  |  |  |
|             | (3),Filter type: 3 dB (G                                                      | aussian)      |                                                           |  |  |  |  |
|             | (4),Detector mode: Pe                                                         | ak            |                                                           |  |  |  |  |
|             | (5),Trace Mode: Max H                                                         | Hold          |                                                           |  |  |  |  |
|             | (6),Sweep Points:                                                             | 19 400        |                                                           |  |  |  |  |
|             | NOTE 1: For spectrum analysers not supporting this high number of swee        |               |                                                           |  |  |  |  |
|             | frequency band may n                                                          | need to be se | egmented.                                                 |  |  |  |  |
|             | (7)Sweep time: For non continuous transmissions (duty cycle less than 100 %), |               |                                                           |  |  |  |  |
|             |                                                                               | •             | ng, such that for each 100 kHz frequency step, the        |  |  |  |  |
|             |                                                                               | -             | two transmissions of the UUT, on any channel.             |  |  |  |  |
|             |                                                                               | • • •         | nt operating in a normal operating (hopping not           |  |  |  |  |
|             | ,                                                                             | •             | hall be further increased to capture multiple             |  |  |  |  |
|             | transmissions on any                                                          |               | •                                                         |  |  |  |  |
|             |                                                                               | •             | etting may result in long measuring times in case of      |  |  |  |  |
|             |                                                                               | uipment. Io   | avoid such long measuring times, an FFT analyser          |  |  |  |  |
|             | could be used.                                                                | ilizo Any on  | nicciona identified during the auroana above and that     |  |  |  |  |
|             |                                                                               | •             | nissions identified during the sweeps above and that      |  |  |  |  |
|             |                                                                               | -             | e applicable limit or above, shall be individually        |  |  |  |  |
|             | table 2 or table 5                                                            |               | clause 5.4.10.2.1.3 and compared to the limits given ir   |  |  |  |  |
|             | Step 3                                                                        |               |                                                           |  |  |  |  |
|             |                                                                               | e range 1 G   | Hz to 12,75 GHz shall be identified.                      |  |  |  |  |
|             | Spectrum analyser set                                                         | •             |                                                           |  |  |  |  |
|             | (1),Resolution bandwi                                                         | •             |                                                           |  |  |  |  |
|             | (2),Video bandwidth: 3                                                        |               |                                                           |  |  |  |  |
|             | (3),Filter type: 3 dB (G                                                      |               |                                                           |  |  |  |  |



| (4),Detector mode: Peak                                                                     |
|---------------------------------------------------------------------------------------------|
| (5),Trace Mode: Max Hold                                                                    |
| (6),Sweep Points: 23 500                                                                    |
| NOTE 3: For spectrum analysers not supporting this high number of sweep points, the         |
| frequency band may need to be segmented.                                                    |
| (7),Sweep time: Auto                                                                        |
| Wait for the trace to stabilize. Any emissions identified during the sweeps above that fall |
| within the 6 dB range below                                                                 |
| the applicable limit or above, shall be individually measured using the procedure in        |
| clause 5.4.10.2.1.3 and compared to the limits given in table 2 or table 5.                 |
| Frequency Hopping equipment may generate a block (or several blocks) of spurious            |
| emissions anywhere within the spurious domain. If this is the case, only the highest peak   |
| of each block of emissions shall be measured using the procedure in clause 5.4.10.2.1.3.    |
| Allow the trace to stabilize. Any emissions identified during the sweeps above that fall    |
| within the 6 dB range below the applicable limit or above, shall be individually measured   |
| using the procedure in clause 5.4.9.2.1.3 and compared to the limits given in table 1 or    |
| table 4.                                                                                    |
| Frequency Hopping equipment may generate a block (or several blocks) of spurious            |
| emissions anywhere within the spurious domain. If this is the case, only the highest peak   |
| of each block of emissions shall be measured using the                                      |
| procedure in clause 5.4.9.2.1.3.                                                            |
| Step 4                                                                                      |
| In case of conducted measurements on smart antenna systems (equipment with multiple         |
| receive chains), step 2 and step 3 need to be repeated for each of the active receive       |
| chains (Ach)The limits used to identify emissions during this pre-scan need to be           |
| reduced with 10 × log10 (Ach) (number of active receive chains).                            |
| Measurement of the emissions identified during the pre-scan                                 |
| The steps below shall be used to accurately measure the individual unwanted emissions       |
| identified during the pre-scan measurements above. This method assumes the spectrum         |
| analyser has a Time Domain Power function                                                   |
| Step 1                                                                                      |
| The level of the emissions shall be measured using the following spectrum analyser          |
| settings:                                                                                   |
| (1),Measurement Mode: Time Domain Power                                                     |
| (2),Centre Frequency: Frequency of the emission identified during the pre-scan              |
| (3),Resolution Bandwidth: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)                               |
| (4),Video Bandwidth: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)                                    |
|                                                                                             |

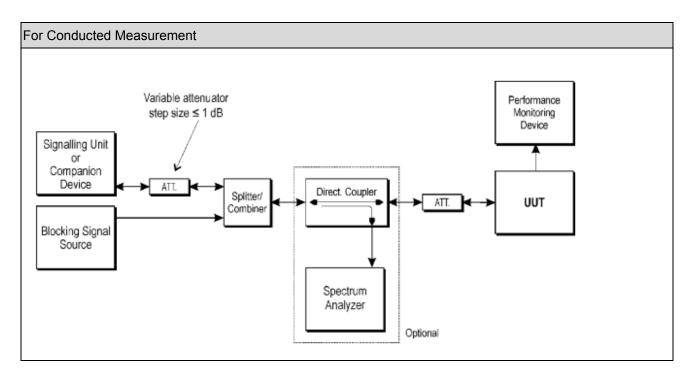


(6),Sweep mode: Single Sweep (7), Sweep time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power (8),Sweep points: Sweep time [μs] / (1 μs) with a maximum of 30 000 (9), Trigger: Video (burst signals) or Manual (continuous signals) (10), Detector: RMS Step 2 Set a window where the start and stop indicators match the start and end of the burst with the highest level and record the value of the power measured within this window. If the spurious emission to be measured is a continuous transmission, the measurement window shall be set to match the start and stop times of the sweep. Step 3 In case of conducted measurements on smart antenna systems (equipment with multiple receive chains), step 2 needs to be repeated for each of the active receive chains (Ach). Sum the measured power (within the observed window) for each of the active receive chains Step 4 The value defined in step 3 shall be compared to the limits defined in tables 2 and 5.



| Product   | : Blazepod                    |  |
|-----------|-------------------------------|--|
| Model No. | : Blazepod                    |  |
| Test Item | : Receiver spurious emissions |  |
| Test Site | : AC-6                        |  |
| Test Mode | : Mode 2: Receive by BLE      |  |

|           | Mode 2: Receive by BLE |               |       |            |          |  |
|-----------|------------------------|---------------|-------|------------|----------|--|
| Frequency | Polarization           | Measure Level | Limit | Over Limit | Detector |  |
| (MHz)     | (H/V)                  | (dBm)         | (dBm) | (dB)       | Delector |  |
| (2402MHz) |                        |               |       |            |          |  |
| 113.9     | Н                      | -71.6         | -57   | -14.6      | PK       |  |
| 128.3     | V                      | -70.1         | -57   | -13.1      | PK       |  |
| 311.3     | Н                      | -74.3         | -57   | -17.3      | PK       |  |
| 338.1     | V                      | -72.2         | -57   | -15.2      | PK       |  |
| 1124.0    | Н                      | -59.9         | -47   | -12.9      | PK       |  |
| 1197.0    | V                      | -53.4         | -47   | -9.4       | PK       |  |
| 2210.1    | Н                      | -54.4         | -47   | -8.4       | PK       |  |
| 2301.6    | V                      | -56.2         | -47   | -9.2       | PK       |  |
| (2480MHz) |                        |               |       |            |          |  |
| 87.5      | Н                      | -74.4         | -57   | -17.4      | PK       |  |
| 96.9      | V                      | -70.8         | -57   | -13.8      | PK       |  |
| 292.5     | Н                      | -72.2         | -57   | -15.2      | PK       |  |
| 296.7     | V                      | -72.7         | -57   | -15.7      | PK       |  |
| 1429.7    | Н                      | -54.4         | -47   | -8.4       | PK       |  |
| 1479.9    | V                      | -57.1         | -47   | -10.1      | PK       |  |
| 2403.1    | Н                      | -53.9         | -47   | -7.9       | PK       |  |
| 2530.6    | V                      | -54.5         | -47   | -9.5       | PK       |  |




## **11 Receiver Blocking**

## **11.1 Test Equipment**

| Receiver Blocking / TR-8                                                                                         |               |                  |             |               |  |
|------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------------|---------------|--|
| Instrument                                                                                                       | Manufacturer  | Туре No.         | Serial No   | Cal. Due Date |  |
| Spectrum Analyzer                                                                                                | Agilent       | N9010A           | MY48030494  | 2019.02.03    |  |
| 10dB Coaxial Coupler                                                                                             | Agilent       | 87300C           | MY44300299  | N/A           |  |
| Calittar/Combiner (Otr. 2)                                                                                       | Mini Cirovito | ZAPD-50W 4.2-6.0 |             | N1/A          |  |
| Splitter/Combiner (Qty: 2)                                                                                       | Mini-Circuits | GHz              | NN256400424 | N/A           |  |
| Bluetooth Test Set                                                                                               | Anritsu       | MT8852B          | 0906001     | 2018.10.16    |  |
| PSG Analog Signal                                                                                                | Agilant       |                  | NN/44004440 | 0040.00.00    |  |
| Generator                                                                                                        | Agilent       | E8257D           | MY44321116  | 2019.02.03    |  |
| Temperature/Humidity                                                                                             | Zhiehen       | 704.0            |             | 2010 04 10    |  |
| Meter                                                                                                            | Zhichen       | ZC1-2            | TR8-TH      | 2019.04.10    |  |
| Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or |               |                  |             |               |  |
| international standards.                                                                                         |               |                  |             |               |  |

#### 11.2 Test Setup





## 11.3 Limit

| Re                                                                                                                                                                                                                                                                                                                                                                                         | ceiver categories                                                                                   |                                                                |                                                   |                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|----------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                            | Receiver category 1                                                                                 |                                                                |                                                   |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | Adaptive equipment with a max                                                                       | kimum RF output power                                          | greater than 10 dB                                | m e.i.r.p. shall be        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | considered as receiver category 1 equipment.                                                        |                                                                |                                                   |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | Wanted signal mean<br>power from companion<br>device (dBm)                                          | Blocking signal<br>frequency<br>(MHz)                          | Blocking<br>signal power<br>(dBm)<br>(see note 2) | Type of blocking<br>signal |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>min</sub> + 6 dB                                                                             | 2 380<br>2 503,5                                               | -53                                               | CW                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>min</sub> + 6 dB                                                                             | 2 300<br>2 330<br>2 360                                        | -47                                               | cw                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>min</sub> + 6 dB<br>NOTE 1: P <sub>min</sub> is the minimu                                   | 2 523,5<br>2 553,5<br>2 583,5<br>2 613,5<br>2 643,5<br>2 673,5 | -47                                               | cw                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | NOTE 2: The levels specific<br>conducted measu<br>antenna assembly<br>Receiver category 2           | rements, the levels have                                       |                                                   |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | Non-adaptive equipment with a<br>equal to 10 % or adaptive equip<br>considered as receiver category | oment with a maximum                                           | , C                                               |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | Wanted signal mean<br>power from companion<br>device (dBm)                                          | Blocking signal<br>frequency<br>(MHz)                          | Blocking<br>signal power<br>(dBm)<br>(see note 2) | Type of blocking<br>signal |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>min</sub> + 6 dB                                                                             | 2 380<br>2 503,5                                               | -57                                               | CW                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>min</sub> + 6 dB                                                                             | 2 300<br>2 583,5                                               | -47                                               | CW                         |  |  |
| <ul> <li>NOTE 1: P<sub>min</sub> is the minimum level of the wanted signal (in dBm) required to m minimum performance criteria as defined in clause 4.3.1.12.3 in the a any blocking signal.</li> <li>NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actuantenna assembly gain.</li> </ul> |                                                                                                     |                                                                |                                                   |                            |  |  |



|                                                                                                                                                                                                                                                                                                                                                                                                | Receiver category 3                                                                                                                                                                                      |                                       |                                                   |                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|----------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                | Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be considered as receiver category 3 equipment. |                                       |                                                   |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | Wanted signal mean<br>power from companion<br>device (dBm)                                                                                                                                               | Blocking signal<br>frequency<br>(MHz) | Blocking<br>signal power<br>(dBm)<br>(see note 2) | Type of blocking<br>signal |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | P <sub>min</sub> + 12 dB                                                                                                                                                                                 | 2 380<br>2 503,5                      | -57                                               | CW                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | P <sub>min</sub> + 12 dB                                                                                                                                                                                 | 2 300<br>2 583,5                      | -47                                               | cw                         |  |  |
| <ul> <li>NOTE 1: P<sub>min</sub> is the minimum level of the wanted signal (in dBm) required to me minimum performance criteria as defined in clause 4.3.1.12.3 in the ab any blocking signal.</li> <li>NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actua antenna assembly gain.</li> </ul> |                                                                                                                                                                                                          |                                       |                                                   |                            |  |  |



## 11.4 Test Procedure

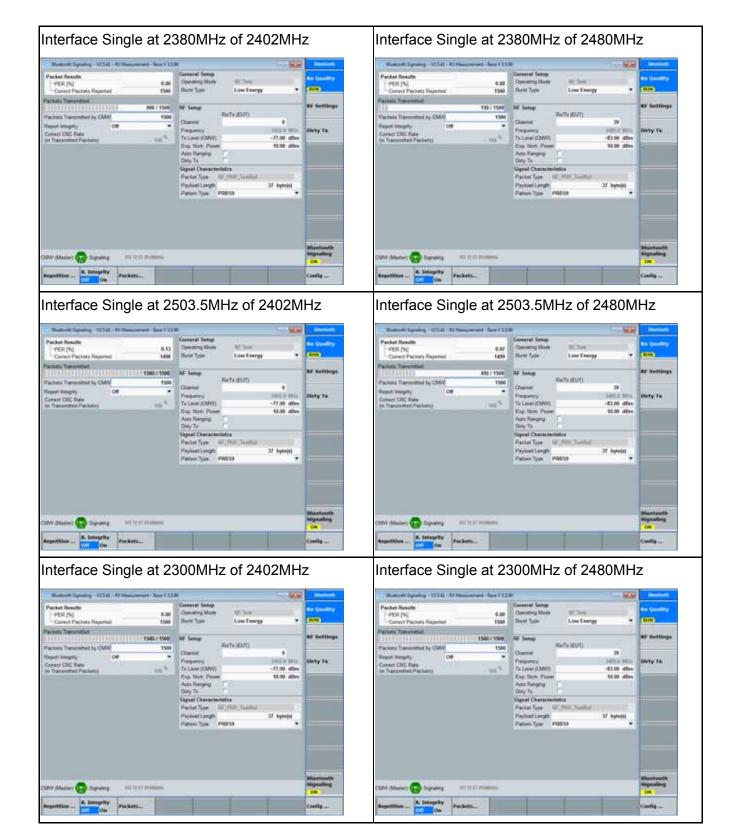
| Test   | Method                                |                  |                                                               |
|--------|---------------------------------------|------------------|---------------------------------------------------------------|
|        | References Rule                       | Chapter          | Description                                                   |
|        | ETSI EN 300 328 V2.1.1                | 5.4.11.2.1       | Receiver Blocking                                             |
| For s  | systems using multiple receive ch     | ains only one    | e chain (antenna port) need to be tested. All other receiver  |
| input  | s shall be terminated.                |                  |                                                               |
| Figu   | re 6 shows the test set-up which      | can be used f    | for performing the receiver blocking test                     |
| The    | procedure in step 1 to step 6 belo    | ow shall be us   | sed to verify the receiver blocking requirement as described  |
| in cla | ause 4.3.1.12 or clause 4.3.2.11.     |                  |                                                               |
| Table  | e 6, table 7 and table 8 in clause 4  | 4.3.1.12.4 cor   | ntain the applicable blocking frequencies and blocking levels |
| for e  | ach of the receiver categories for    | testing Rece     | iver Blocking on frequency hopping equipment.                 |
| Table  | e 14, table 15 and table 16 in clau   | ise 4.3.2.11.4   | contain the applicable blocking frequencies and blocking      |
| level  | s for each of the receiver categor    | ies for testing  | Receiver Blocking on equipment using wide band                |
| mod    | ulations other than FHSS.             |                  |                                                               |
| Step   | 1                                     |                  |                                                               |
| For r  | non-frequency hopping equipmen        | t, the UUT sh    | all be set to the lowest operating channel                    |
| Step   | 2                                     |                  |                                                               |
| The    | blocking signal generator is set to   | o the first freq | uency as defined in the appropriate table corresponding to    |
| the r  | eceiver category and type of equi     | ipment.          |                                                               |
| Step   | 3                                     |                  |                                                               |
| With   | the blocking signal generator sw      | itched off, a c  | communication link is established between the UUT and the     |
| asso   | ciated companion device using th      | ne test setup    | shown in figure 6. The attenuation of the variable attenuator |
| shall  | be increased in 1 dB steps to a v     | alue at whick    | n the minimum performance criteria as specified in clause     |
| 4.3.1  | .12.3 or clause 4.3.2.11.3 is still i | met. The resu    | Iting level for the wanted signal at the input of the UUT is  |
| Pmir   | Ι.                                    |                  |                                                               |
| This   | signal level (Pmin) is increased b    | y the value p    | rovided in the table corresponding to the receiver category   |
| and    | type of equipment.                    |                  |                                                               |
| Step   | 9 4                                   |                  |                                                               |
| The    | blocking signal at the UUT is set     | to the level p   | rovided in the table corresponding to the receiver category   |
| and    | type of equipment. It shall be veri   | fied and reco    | rded in the test report that the performance criteria as      |
| spec   | ified in clause 4.3.1.12.3 or claus   | e 4.3.2.11.3 i   | s met.                                                        |
| Step   | 5                                     |                  |                                                               |
| Repe   | eat step 4 for each remaining con     | nbination of fr  | equency and level for the blocking signal as provided in the  |
| table  | corresponding to the receiver ca      | itegory and ty   | rpe of equipment.                                             |
| Step   | 6                                     |                  |                                                               |
| For r  | non-frequency hopping equipmen        | t, repeat step   | 2 to step 5 with the UUT operating at the highest operating   |
| chan   | nel                                   |                  |                                                               |
|        |                                       |                  |                                                               |




| Product   | : | Blazepod                     |
|-----------|---|------------------------------|
| Model No. | : | Blazepod                     |
| Test Item | : | Receiver spurious emissions  |
| Test Mode | : | Mode3: Normal Receive by BLE |

| Antenna (    | Gain = 1.92dBi |                                          |                                   |                                            |                     |
|--------------|----------------|------------------------------------------|-----------------------------------|--------------------------------------------|---------------------|
| Test<br>Mode | Frequency      | Blocking<br>signal<br>frequency<br>(MHz) | Blocking<br>signal power<br>(dBm) | PER<br>injection blocking<br>signal<br>(%) | PER<br>Limit<br>(%) |
|              |                | 2380                                     | -55.08                            | 0                                          | 10                  |
|              | 2402           | 2503.5                                   | -55.08                            | 0.13                                       | 10                  |
|              | 2402           | 2300                                     | -45.08                            | 0                                          | 10                  |
| Mode 3       |                | 2583.5                                   | -45.08                            | 0                                          | 10                  |
| Mode 3       | 2490           | 2380                                     | -55.08                            | 0                                          | 10                  |
|              |                | 2503.5                                   | -55.08                            | 0.07                                       | 10                  |
|              | 2480           | 2300                                     | -45.08                            | 0                                          | 10                  |
|              |                | 2583.5                                   | -45.08                            | 0.07                                       | 10                  |

#### Wanted signal level = Pmin + 6dB


#### Pmin at 2402MHz



#### Pmin at 2480MHz

| and the second se | and the second se | -       | 10                                                                |                       |                 |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|-----------------------|-----------------|---------------|
| Packet Results<br>-PER (%)<br>-Carrent Packets Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.47   | General Setup<br>Operating Mode<br>Short Type                     | AF Text<br>Low Energy |                 | na Quality    |
| Pactors Torondad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                   |                       |                 | RF Settings   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -       | RF Setup                                                          | Self- (DJD)           |                 | at an indiana |
| Packets Tansmitted by CMV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1500    | Chanel                                                            | Sector Broad          | 29              | -             |
| Report Integrity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Pagaray                                                           |                       | Dente a serie " | Dirty Ta      |
| Connect CRC Rate<br>In Transmitted Pachetei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 181     | To Level (CMV)                                                    |                       | -91.00 dfm      | Course in the |
| en Transmittert Fachenaj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a, c 11 | Exp. North Press                                                  |                       | 10.00 stlim     | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Auto Kangrig<br>Diny Ta                                           | E.                    |                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Signal Character<br>Packet Type<br>Paylant Longth<br>Pattern Type | 17_990(364mat))       | 37 bytojej      | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Pattern Type (                                                    | PR659                 |                 | Biastanth     |
| (Shir (Alastar) 😱 Signaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |                                                                   |                       |                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                   |                       |                 |               |







| Pecket Results<br>PER [%]<br>Carrett Packets Reported                                                      |                            | General Setup                                                                    |                      |                                              |                        | 2 Baston Sparing - 1234 - 47 Manuminet - See 7 1338                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                        |
|------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------|----------------------|----------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|
|                                                                                                            | 1500                       | Operating Mode<br>Shirst Type                                                    | AF See<br>Lew Energy |                                              | Ra Quality<br>(RM)     | Packet Results<br>PER [%]<br>Current Packets Reported                                                           | 8.67         | and the loss of the second secon | f her<br>ow fairing *                          | na Quality<br>(SIM)    |
| Particle Toronofiel 300 / 1500                                                                             |                            | RF Setup                                                                         | Reffe (EUT)          |                                              | RF Settings            | The second se |              | RF Setup<br>Reffection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                            | RF Settings            |
| Sectors Transmitted by CMAV<br>legent Integrity CME<br>CME Transmitted Pachatey<br>In Transmitted Pachatey | 1900<br>tml <sup>5</sup> . | Dumit<br>Property<br>Tx Level (DMV)<br>Exp. Non. Power<br>Acts Tanging<br>Day Tx |                      | 0<br>100210 1000<br>-177.00 dDm<br>10.00 dDm | Diety Ta               | Packets Transmitted by CMM<br>Report Herpity Off<br>Connect CRIC Hate<br>(in Transmitted Packets)               | 1500<br>     | Chamel<br>Pregamy<br>Ta Level (CMW)<br>Exp. Non. Power<br>Acts Renymp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>2400.2 1000<br>-42.00 4000<br>10.00 4000 | Diety Ta               |
|                                                                                                            |                            | Signal Characterit<br>Packet Type II<br>Psylant Length<br>Patters Type Pl        | (1990)36emat)))      | 37 byte(s)                                   |                        |                                                                                                                 |              | Signal Characteristics<br>Packet Type 67,1907<br>Payload Length<br>Pattern Type PR859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scotlat<br>37 bytojni -                        |                        |
| NY Musico 🚱 Separang 🛛 11 115                                                                              | Parama                     |                                                                                  |                      |                                              | Biantauth<br>Signaling | Chill (Masser) 😱 Signarig 💷 1                                                                                   | 1 Protection |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | Blactooth<br>Signaling |

The End

\_